期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Properties of Chemically Synthesized Nano-geopolymer Cement based Self-Compacting Geopolymer Concrete(SCGC)
1
作者 Muhammad Ali Sikandar Byung Wan Jo +1 位作者 zafar baloch Muhammad Asad Khan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第1期98-106,共9页
The physical and mechanical properties of self-compacting geopolymer concrete(SCGC) using chemically synthesized nano-geopolymer cement was investigated. Nano-geopolymer cement was synthesized using nano-silica, alkal... The physical and mechanical properties of self-compacting geopolymer concrete(SCGC) using chemically synthesized nano-geopolymer cement was investigated. Nano-geopolymer cement was synthesized using nano-silica, alkali activator, and sodium aluminate in the laboratory. Subsequently, nine nanogeopolymer cement sbased SCGC mixes with varying nano-geopolymer cement content, alkali activator content, coarse aggregate(CA) content, and curing temperature were produced. The workability-related fresh properties were assessed through slump flow diameter and slump flow rate measurements. Mechanical performances were evaluated through compressive strength, splitting tensile strength, and modulus of elasticity measurements. In addition, rapid chloride penetration test, water absorption, and porosity tests were also performed. It was assessed that all mix design parameters influenced the fresh and hardened properties of SCGC mixes. Based on test results, it was deduced that nano-geopolymer cement SCGC performed fairly well. All the SCGC mixes achieved the 28-day compressive strength in the range of 60-80 MPa. Additionally, all mixes attained 60% of their 28-day strength during the first three days of elevated temperature curing. FTIR and SEM analyses were performed to evaluate the degree of polymerization and the microstructure respectively for SCGC mixes. 展开更多
关键词 GEOPOLYMER COMPRESSIVE strength SELF-COMPACTING concrete ALKALI ACTIVATOR NANO-SILICA
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部