Adaptive bit-loading algorithms can improve the performance of OFDM systems significantly. The tradeoff between the performance of the algorithm and its computational complexity is essential for the implementation of ...Adaptive bit-loading algorithms can improve the performance of OFDM systems significantly. The tradeoff between the performance of the algorithm and its computational complexity is essential for the implementation of loading algorithms. In this paper, we present a low complexity non-iterative discrete bit-loading algorithm to maximize the data rate subject to specified target BER and uniform power allocation. Simulation results show that the proposed algorithm outperforms the equal-BER loading and achieves similar rates to incremental allocation, yet with much lower complexity.展开更多
The BER performance for an optimal circular 16-QAM constellation is theoretically derived and applied in wavelet based OFDM system in additive white Gaussian noise channel. Signal point constellations have been discus...The BER performance for an optimal circular 16-QAM constellation is theoretically derived and applied in wavelet based OFDM system in additive white Gaussian noise channel. Signal point constellations have been discussed in much literature. An optimal circular 16-QAM is developed. The calculation of the BER is based on the four types of the decision boundaries. Each decision boundary is determined based on the space distance d following the pdf Gaussian distribution with respect to the in-phase and quadrature components nI and nQ with the assumption that they are statistically independent to each other. The BER analysis for other circular M-ary QAM is also analyzed. The system is then applied to wavelet based OFDM. The wavelet transform is considered because it offers a better spectral containment feature compared to conventional OFDM using Fourier transform. The circular schemes are slightly better than the square schemes in most SNR values. All simulation results have met the theoretical calculations. When applying to wavelet based OFDM, the circular modulation scheme has also performed slightly less errors as compared to the square modulation scheme.展开更多
文摘Adaptive bit-loading algorithms can improve the performance of OFDM systems significantly. The tradeoff between the performance of the algorithm and its computational complexity is essential for the implementation of loading algorithms. In this paper, we present a low complexity non-iterative discrete bit-loading algorithm to maximize the data rate subject to specified target BER and uniform power allocation. Simulation results show that the proposed algorithm outperforms the equal-BER loading and achieves similar rates to incremental allocation, yet with much lower complexity.
文摘The BER performance for an optimal circular 16-QAM constellation is theoretically derived and applied in wavelet based OFDM system in additive white Gaussian noise channel. Signal point constellations have been discussed in much literature. An optimal circular 16-QAM is developed. The calculation of the BER is based on the four types of the decision boundaries. Each decision boundary is determined based on the space distance d following the pdf Gaussian distribution with respect to the in-phase and quadrature components nI and nQ with the assumption that they are statistically independent to each other. The BER analysis for other circular M-ary QAM is also analyzed. The system is then applied to wavelet based OFDM. The wavelet transform is considered because it offers a better spectral containment feature compared to conventional OFDM using Fourier transform. The circular schemes are slightly better than the square schemes in most SNR values. All simulation results have met the theoretical calculations. When applying to wavelet based OFDM, the circular modulation scheme has also performed slightly less errors as compared to the square modulation scheme.