We report on a conceptually new type of waveguide in glass by femtosecond laser direct writing,namely,photonic latticelike waveguide(PLLW).The PLLWfs core consists of well-distributed and densified tracks with a sub-m...We report on a conceptually new type of waveguide in glass by femtosecond laser direct writing,namely,photonic latticelike waveguide(PLLW).The PLLWfs core consists of well-distributed and densified tracks with a sub-micron size of 0.62μm in width.Specifically,a PLLW inscribed as hexagonal-shape input with a ring-shape output side was implemented to converse Gaussian mode to doughnut-like mode,and high conversion efficiency was obtained with a low insertion loss of 1.65 dB at 976 nm.This work provides a new freedom for design and fabrication of the refractive index profile of waveguides with sub-micron resolution and broadens the functionalities and application scenarios of femtosecond laser direct-writing waveguides in future 3D integrated photonic systems.展开更多
In this work, a hybrid structure consisting of a multicomponent germanate glass microsphere containing bismuth as a gain medium is proposed and presented. The bismuth-doped germanate glass microspheres were fabricated...In this work, a hybrid structure consisting of a multicomponent germanate glass microsphere containing bismuth as a gain medium is proposed and presented. The bismuth-doped germanate glass microspheres were fabricated from a glass fiber tip with no precipitation of the bismuth metal. Coupling with a fiber taper, the bismuth-doped microsphere single-mode laser was observed to lase at around 1305.8 nm using 808 nm excitation. The low threshold of absorbed pump power at 215 μW makes this microlaser appealing for various applications, including tunable lasers for a range of purposes in telecommunication, biomedical, and optical information processing.展开更多
基金This work was supported by the National Key R&D Program of China(No.2021YFB2800500)National Natural Science Foundation of China(Nos.U20A20211,51902286,61775192,61905215,51772270,62105297,and 61905093)+1 种基金Zhejiang Provincial Natural Science Foundation(No.LQ22F050022)State Key Laboratory of High Field Laser Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,and Fundamental Research Funds for the Central Universities.
文摘We report on a conceptually new type of waveguide in glass by femtosecond laser direct writing,namely,photonic latticelike waveguide(PLLW).The PLLWfs core consists of well-distributed and densified tracks with a sub-micron size of 0.62μm in width.Specifically,a PLLW inscribed as hexagonal-shape input with a ring-shape output side was implemented to converse Gaussian mode to doughnut-like mode,and high conversion efficiency was obtained with a low insertion loss of 1.65 dB at 976 nm.This work provides a new freedom for design and fabrication of the refractive index profile of waveguides with sub-micron resolution and broadens the functionalities and application scenarios of femtosecond laser direct-writing waveguides in future 3D integrated photonic systems.
基金National Natural Science Foundation of China(NSFC)(61575050)Key Program for International S&T Cooperation Projects of China(2016YFE0126500)+3 种基金Key Program for Natural Science Foundation of Heilongjiang Province of China(ZD2016012)111 Project(B13015)Fundamental Research Funds of the Central UniversityHarbin Engineering University(HEU)
文摘In this work, a hybrid structure consisting of a multicomponent germanate glass microsphere containing bismuth as a gain medium is proposed and presented. The bismuth-doped germanate glass microspheres were fabricated from a glass fiber tip with no precipitation of the bismuth metal. Coupling with a fiber taper, the bismuth-doped microsphere single-mode laser was observed to lase at around 1305.8 nm using 808 nm excitation. The low threshold of absorbed pump power at 215 μW makes this microlaser appealing for various applications, including tunable lasers for a range of purposes in telecommunication, biomedical, and optical information processing.