期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Variable Parameter Nonlinear Control for Maximum Power Point Tracking Considering Mitigation of Drive-train Load 被引量:2
1
作者 zaiyu chen Minghui Yin +3 位作者 Lianjun Zhou Yaping Xia Jiankun Liu Yun Zou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第2期252-259,共8页
Since mechanical loads exert a significant influence on the life span of wind turbines, the reduction of transient load on drive-train shaft has received more attention when implementing a maximum power point tracking... Since mechanical loads exert a significant influence on the life span of wind turbines, the reduction of transient load on drive-train shaft has received more attention when implementing a maximum power point tracking(MPPT) controller.Moreover, a trade-off between the efficiency of wind energy extraction and the load level of drive-train shaft becomes a key issue. However, for the existing control strategies based on nonlinear model of wind turbines, the MPPT efficiencies are improved at the cost of the intensive fluctuation of generator torque and significant increase of transient load on drive train shaft. Hence, in this paper, a nonlinear controller with variable parameter is proposed for improving MPPT efficiency and mitigating transient load on drive-train simultaneously. Then,simulations on FAST(Fatigue, Aerodynamics, Structures, and Turbulence) code and experiments on the wind turbine simulator(WTS) based test bench are presented to verify the efficiency improvement of the proposed control strategy with less cost of drive-train load. 展开更多
关键词 Drive-train load maximum power point tracking(MPPT) nonlinear control wind turbines(WT)
下载PDF
Torque Limit-based Inertial Control Method Based on Delayed Support for Primary Frequency Control of Wind Turbines
2
作者 Wei Gu zaiyu chen +3 位作者 Qun Li Minghui Yin Qiang Li Yun Zou 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第2期561-570,共10页
To avoid the secondary frequency dip caused by the steep drop of the electrical power of wind turbines(WTs)at the end of frequency support stage,the torque limit-based iner-tial control(TLIC)method sets the power refe... To avoid the secondary frequency dip caused by the steep drop of the electrical power of wind turbines(WTs)at the end of frequency support stage,the torque limit-based iner-tial control(TLIC)method sets the power reference as a linear function of rotor speed,rather than the step form for the step-wise inertial control.However,the compensation effect on the frequency nadir(FN)caused by the load surge is weakened as the TLIC power is no longer in the step form.Specifically,the maximum point of the frequency response component(FRC)contributed by TLIC occurs earlier than the minimum point of FRC corresponding to the load surge,so that the FN cannot be adequately raised.Therefore,this paper first investigates the relation between the peak and nadir times of FRCs stimulated by the TLIC and load power.On this basis,with the compensation principle of matching the peak and nadir times of FRCs,the improved TLIC method based on delayed support is proposed.Finally,the effectiveness of the proposed method is validated via the experiments on the test bench of wind-integrated power system. 展开更多
关键词 Wind turbine frequency response component torque limit inertial control delayed support
原文传递
Inertia compensation scheme for wind turbine simulator based on deviation mitigation 被引量:2
3
作者 Weijie LI Minghui YIN +1 位作者 zaiyu chen Yun ZOU 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2017年第2期228-238,共11页
Wind turbine simulator(WTS) is an important test rig for validating the control strategies of wind turbines(WT). Since the inertia of WTSs is much smaller than that of WTs, the inertia compensation scheme is usually e... Wind turbine simulator(WTS) is an important test rig for validating the control strategies of wind turbines(WT). Since the inertia of WTSs is much smaller than that of WTs, the inertia compensation scheme is usually employed in WTSs for replicating the slow mechanical behavior of WTs. In this paper, it is found that the instability of WTSs applying the inertia compensation scheme,characterized by the oscillation of compensation torque, is caused by the one-step time delay produced in the acceleration observation. Hence, a linear discrete model of WTS considering the time delay of acceleration observation is developed and its stability is analyzed. Moreover, in order to stably simulate WTs with large inertia, an improved inertia compensation scheme, applying a first-order digitalfilter to mitigate deviation response induced by the time delay, is proposed. And, the criterion for selecting the filter coefficients is established based on the stability condition analysis. Finally, the WTS with the proposed scheme is validated by simulations and experiments. 展开更多
关键词 Wind turbine simulator Inertia compensation scheme Stability analysis Deviation mitigation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部