期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Kalman Filter-Based CNN-BiLSTM-ATT Model for Traffic Flow Prediction 被引量:1
1
作者 Hong Zhang Gang Yang +1 位作者 Hailiang Yu zan zheng 《Computers, Materials & Continua》 SCIE EI 2023年第7期1047-1063,共17页
To accurately predict traffic flow on the highways,this paper proposes a Convolutional Neural Network-Bi-directional Long Short-Term Memory-Attention Mechanism(CNN-BiLSTM-Attention)traffic flow prediction model based ... To accurately predict traffic flow on the highways,this paper proposes a Convolutional Neural Network-Bi-directional Long Short-Term Memory-Attention Mechanism(CNN-BiLSTM-Attention)traffic flow prediction model based on Kalman-filtered data processing.Firstly,the original fluctuating data is processed by Kalman filtering,which can reduce the instability of short-term traffic flow prediction due to unexpected accidents.Then the local spatial features of the traffic data during different periods are extracted,dimensionality is reduced through a one-dimensional CNN,and the BiLSTM network is used to analyze the time series information.Finally,the Attention Mechanism assigns feature weights and performs Soft-max regression.The experimental results show that the data processed by Kalman filter is more accurate in predicting the results on the CNN-BiLSTM-Attention model.Compared with the CNN-BiLSTM model,the Root Mean Square Error(RMSE)of the Kal-CNN-BiLSTM-Attention model is reduced by 17.58 and Mean Absolute Error(MAE)by 12.38,and the accuracy of the improved model is almost free from non-working days.To further verify the model’s applicability,the experiments were re-run using two other sets of fluctuating data,and the experimental results again demonstrated the stability of the model.Therefore,the Kal-CNN-BiLSTM-Attention traffic flow prediction model proposed in this paper is more applicable to a broader range of data and has higher accuracy. 展开更多
关键词 HIGHWAY traffic flow prediction Kalman filter CNN-BiLSTM-Attention
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部