The hybrid atomistic structure-based model has been validated to be effective in investigation of G-quadruplex folding.In this study,we performed large-scale conventional all-atom simulations to complement the folding...The hybrid atomistic structure-based model has been validated to be effective in investigation of G-quadruplex folding.In this study,we performed large-scale conventional all-atom simulations to complement the folding mechanism of human telomeric sequence Htel24 revealed by a multi-basin hybrid atomistic structure-based model.Firstly,the real time-scale of folding rate,which cannot be obtained from the structure-based simulations,was estimated directly by constructing a Markov state model.The results show that Htel24 may fold as fast as on the order of milliseconds when only considering the competition between the hybrid-1 and hybrid-2 G-quadruplex conformations.Secondly,in comparison with the results of structure-based simulations,more metastable states were identified to participate in the formation of hybrid-1 and hybrid-2 conformations.These findings suggest that coupling the hybrid atomistic structure-based model and the conventional all-atom model can provide more insights into the folding dynamics of DNA G-quadruplex.As a result,the multiscale computational framework adopted in this study may be useful to study complex processes of biomolecules involving large conformational changes.展开更多
基金the National Natural Science Foundation of China(Grant Nos.11504043,61671107,31670727,and 61771093)the Science Foundation of Shandong Province of China(Grant No.ZR2016JL027)+1 种基金the Taishan Young Scholars Program of Shandong Province of China(Grant No.tsqn20161049)the Youth Science and Technology Innovation Plan of Universities in Shandong,China(Grant No.2019KJE007)。
文摘The hybrid atomistic structure-based model has been validated to be effective in investigation of G-quadruplex folding.In this study,we performed large-scale conventional all-atom simulations to complement the folding mechanism of human telomeric sequence Htel24 revealed by a multi-basin hybrid atomistic structure-based model.Firstly,the real time-scale of folding rate,which cannot be obtained from the structure-based simulations,was estimated directly by constructing a Markov state model.The results show that Htel24 may fold as fast as on the order of milliseconds when only considering the competition between the hybrid-1 and hybrid-2 G-quadruplex conformations.Secondly,in comparison with the results of structure-based simulations,more metastable states were identified to participate in the formation of hybrid-1 and hybrid-2 conformations.These findings suggest that coupling the hybrid atomistic structure-based model and the conventional all-atom model can provide more insights into the folding dynamics of DNA G-quadruplex.As a result,the multiscale computational framework adopted in this study may be useful to study complex processes of biomolecules involving large conformational changes.