The Rongshida Group, a leading electrical-applianceproducer in China, planned to choose its advertising agent fromfour candidates, the China Advertising Inc., Shanghai Ogilvy &Mather, Shanghai Leo Burnett and RSCG...The Rongshida Group, a leading electrical-applianceproducer in China, planned to choose its advertising agent fromfour candidates, the China Advertising Inc., Shanghai Ogilvy &Mather, Shanghai Leo Burnett and RSCG, by balancing one oftheir advertisement proposals against another. Lasting five daysand nights, the customer finally selected RSCG as its agent. Bossof the China Advertising Inc. said they bed lost the competitionto the three 4A companies not in terms of proposal but becauseof comprehensive power.展开更多
针对电热综合能源系统由于风电出力的随机性和波动性而难以有效调度的问题,提出了以成本最小化和弃风最小化为目标的一种多目标两阶段随机规划方法(multi-objective and two-stage stochastic programming,MOTSP),其中采用两阶段的随机...针对电热综合能源系统由于风电出力的随机性和波动性而难以有效调度的问题,提出了以成本最小化和弃风最小化为目标的一种多目标两阶段随机规划方法(multi-objective and two-stage stochastic programming,MOTSP),其中采用两阶段的随机规划模型对成本最小化部分进行建模分析,第一阶段以火电机组的启停成本为调度目标,第二阶段以机组运行成本为调度目标。最后采用多目标算法NSGA-Ⅱ中对解的筛选机制求解随机规划问题。该方法利用高斯分布描述负荷和风力发电预测误差来解决风电出力的不确定性,采用蒙特卡罗方法生成随机场景,并采用反向缩减技术对场景进行削减。仿真结果表明,所提的MOTSP算法比其他多种智能算法的解集更均匀广泛,收敛性更好,能够最大限度地减少弃风并使机组运营成本最小。展开更多
文摘The Rongshida Group, a leading electrical-applianceproducer in China, planned to choose its advertising agent fromfour candidates, the China Advertising Inc., Shanghai Ogilvy &Mather, Shanghai Leo Burnett and RSCG, by balancing one oftheir advertisement proposals against another. Lasting five daysand nights, the customer finally selected RSCG as its agent. Bossof the China Advertising Inc. said they bed lost the competitionto the three 4A companies not in terms of proposal but becauseof comprehensive power.
文摘针对电热综合能源系统由于风电出力的随机性和波动性而难以有效调度的问题,提出了以成本最小化和弃风最小化为目标的一种多目标两阶段随机规划方法(multi-objective and two-stage stochastic programming,MOTSP),其中采用两阶段的随机规划模型对成本最小化部分进行建模分析,第一阶段以火电机组的启停成本为调度目标,第二阶段以机组运行成本为调度目标。最后采用多目标算法NSGA-Ⅱ中对解的筛选机制求解随机规划问题。该方法利用高斯分布描述负荷和风力发电预测误差来解决风电出力的不确定性,采用蒙特卡罗方法生成随机场景,并采用反向缩减技术对场景进行削减。仿真结果表明,所提的MOTSP算法比其他多种智能算法的解集更均匀广泛,收敛性更好,能够最大限度地减少弃风并使机组运营成本最小。