In the modern science, priority is given for the search of biological active compounds with specific properties. As a result of experimental data, it was found that in the reaction between N-(<em>β</em>-D...In the modern science, priority is given for the search of biological active compounds with specific properties. As a result of experimental data, it was found that in the reaction between N-(<em>β</em>-D-glycopyranosyl)-semicarbazide and the Lawesson reagent (2,4-bis(p-methoxyphenyl)-1,3-dithiadiphosphetane 2,4-disulfide) at the ratio 1:1 in pyridine when boiling under reflux in a water bath for 20 - 35 minutes, a new synthetic compound N-(<em>β</em>-D-glycopyranosyl)-thiosemicarbazide is formed. The individuality and structure of the target products were confirmed by 13C NMR spectroscopy, 1H NMR spectroscopy, IR spectroscopy, and elemental analysis. For the synthesized new compounds of N-(<em>β</em>-D-glycopyranosyl)-thiosemicarbazides, the probability of pharmacological and toxic effects were predicted by the computer method in silico. From the synthesized compounds N-(<em>β</em>-D-galactopyranosyl)-thiosemicarbazide, the probability of antibacterial (antibacterial) activity is predicted (<em>Pa</em>/<em>Pi</em> 0.544/0.013). The antibacterial activity of the compound (4) was confirmed in a test for salmonella infection of lambs, salmonellosis of calves, and colipathogenic E. coli serotypes. An experimental study by the in vitro method made it possible to conclude that the new synthetic compound N-(<em>β</em>-D-galactopyranosyl)-thiosemicarbazide in the studied concentrations has a pronounced bactericidal and bacteriostatic effect. The synthetic new compound N-(<em>β</em>-D-glyco- pyranosyl)-thiosemicarbazide is a promising compound for further study.展开更多
文摘In the modern science, priority is given for the search of biological active compounds with specific properties. As a result of experimental data, it was found that in the reaction between N-(<em>β</em>-D-glycopyranosyl)-semicarbazide and the Lawesson reagent (2,4-bis(p-methoxyphenyl)-1,3-dithiadiphosphetane 2,4-disulfide) at the ratio 1:1 in pyridine when boiling under reflux in a water bath for 20 - 35 minutes, a new synthetic compound N-(<em>β</em>-D-glycopyranosyl)-thiosemicarbazide is formed. The individuality and structure of the target products were confirmed by 13C NMR spectroscopy, 1H NMR spectroscopy, IR spectroscopy, and elemental analysis. For the synthesized new compounds of N-(<em>β</em>-D-glycopyranosyl)-thiosemicarbazides, the probability of pharmacological and toxic effects were predicted by the computer method in silico. From the synthesized compounds N-(<em>β</em>-D-galactopyranosyl)-thiosemicarbazide, the probability of antibacterial (antibacterial) activity is predicted (<em>Pa</em>/<em>Pi</em> 0.544/0.013). The antibacterial activity of the compound (4) was confirmed in a test for salmonella infection of lambs, salmonellosis of calves, and colipathogenic E. coli serotypes. An experimental study by the in vitro method made it possible to conclude that the new synthetic compound N-(<em>β</em>-D-galactopyranosyl)-thiosemicarbazide in the studied concentrations has a pronounced bactericidal and bacteriostatic effect. The synthetic new compound N-(<em>β</em>-D-glyco- pyranosyl)-thiosemicarbazide is a promising compound for further study.