A traffic model based on the road surface conditions during adverse weather is presented. The surface of a road is affected by snow, compacted snow, and ice, which affects the traffic behavior. In this paper, a new ma...A traffic model based on the road surface conditions during adverse weather is presented. The surface of a road is affected by snow, compacted snow, and ice, which affects the traffic behavior. In this paper, a new macroscopic traffic flow model based on the transition velocity distribution is proposed which characterizes traffic alignment under adverse weather conditions. Two examples are considered to illustrate the effect of the transition velocity behavior on traffic velocity and density. Simulation results are presented which show that this model provides a more accurate characterization of traffic flow behavior than the well known Payne-Whitham model. The proposed model can be used to reduce accidents and improve road safety during adverse weather conditions.展开更多
基金Project supported by Higher Education Commission,Pakistan/National Center of Big Data and Cloud Computing
文摘A traffic model based on the road surface conditions during adverse weather is presented. The surface of a road is affected by snow, compacted snow, and ice, which affects the traffic behavior. In this paper, a new macroscopic traffic flow model based on the transition velocity distribution is proposed which characterizes traffic alignment under adverse weather conditions. Two examples are considered to illustrate the effect of the transition velocity behavior on traffic velocity and density. Simulation results are presented which show that this model provides a more accurate characterization of traffic flow behavior than the well known Payne-Whitham model. The proposed model can be used to reduce accidents and improve road safety during adverse weather conditions.