期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Preparation and properties of T-ZnO_(w) enhanced BCP scaffolds with double-layer structure by digital light processing 被引量:2
1
作者 Ming-Zhu PAN Shuai-Bin HUA +4 位作者 Jia-Min WU Xi YUAN ze-lin deng Jun XIAO Yu-Sheng SHI 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第4期570-581,共12页
Bone scaffolds require both good bioactivity and mechanical properties to keep shape and promote bone repair.In this work,T-ZnO_(w) enhanced biphasic calcium phosphate(BCP)scaffolds with triply periodic minimal surfac... Bone scaffolds require both good bioactivity and mechanical properties to keep shape and promote bone repair.In this work,T-ZnO_(w) enhanced biphasic calcium phosphate(BCP)scaffolds with triply periodic minimal surface(TPMS)-based double-layer porous structure were fabricated by digital light processing(DLP)with high precision.Property of suspension was first discussed to obtain better printing quality.After sintering,T-ZnO_(w) reacts with b-tricalcium phosphate(β-TCP)to form Ca_(19)Zn_(2)(PO_(4))14,and inhibits the phase transition toα-TCP.With the content of T-ZnO_(w) increasing from 0 to 2 wt%,the flexural strength increases from 40.9 to 68.5 MPa because the four-needle whiskers can disperse stress,and have the effect of pulling out as well as fracture toughening.However,excessive whiskers will reduce the cure depth,and cause more printing defects,thus reducing the mechanical strength.Besides,T-ZnO_(w) accelerates the deposition of apatite,and the sample with 2 wt%T-ZnO_(w) shows the fastest mineralization rate.The good biocompatibility has been proved by cell proliferation test.Results confirmed that doping T-ZnO_(w) can improve the mechanical strength of BCP scaffolds,and keep good biological property,which provides a new strategy for better bone repair. 展开更多
关键词 biphasic calcium phosphate(BCP) T-ZnO_(w) digital light processing(DLP) double-layer structure cure property mechanical strength
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部