Mg-1 wt.%Li-1 wt.%Ca(LX11)and Mg-4 wt.%Li-1 wt.%Ca(LX41)alloys share the same hexagonal closed-packed crystalline structure.However,the differences in microstructure,mechanical properties,and degradation rates between...Mg-1 wt.%Li-1 wt.%Ca(LX11)and Mg-4 wt.%Li-1 wt.%Ca(LX41)alloys share the same hexagonal closed-packed crystalline structure.However,the differences in microstructure,mechanical properties,and degradation rates between the two alloys are not well understood.Hereby,the above three aspects of LX11 and LX41 alloys were studied via optical microscopy,tensile tests,and electrochemical polarization and electrochemical impedance spectroscopy,together with hydrogen evolution.The concentration of the released Mg^(2+),Ca^(2+),and Li+ions was analyzed using a flame atomic absorption spectrophotometer.Results demonstrated that the LX11 alloy was composed of finerα-Mg grains,fewer twins,and smaller volume fractions of the intermetallic phases Mg_(2)Ca than the LX41 alloy.The increasing Li concentration generated a weak decrease in the yield strength of the Mg-Li-Ca alloys,a remarkable increase in elongation to failure,and a stable ultimate tensile strength.The LX11 alloy had better corrosion resistance than the LX41 alloy.The release rate of the cations(Mg^(2+),Ca^(2+),and Li+)varied significantly with time.The release rate of metallic ions in Hank’s solution cannot reflect the true corrosion rate of Mg-Li-Ca alloys due to the formation of the precipitated corrosion products and their difference in solubility.The dealloying corrosion mechanism of the Mg_(2)Ca phase in Mg-Li-Ca alloys was proposed.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52071191)the National Key R&D Program of China(Grant No.2021YFC2400700).
文摘Mg-1 wt.%Li-1 wt.%Ca(LX11)and Mg-4 wt.%Li-1 wt.%Ca(LX41)alloys share the same hexagonal closed-packed crystalline structure.However,the differences in microstructure,mechanical properties,and degradation rates between the two alloys are not well understood.Hereby,the above three aspects of LX11 and LX41 alloys were studied via optical microscopy,tensile tests,and electrochemical polarization and electrochemical impedance spectroscopy,together with hydrogen evolution.The concentration of the released Mg^(2+),Ca^(2+),and Li+ions was analyzed using a flame atomic absorption spectrophotometer.Results demonstrated that the LX11 alloy was composed of finerα-Mg grains,fewer twins,and smaller volume fractions of the intermetallic phases Mg_(2)Ca than the LX41 alloy.The increasing Li concentration generated a weak decrease in the yield strength of the Mg-Li-Ca alloys,a remarkable increase in elongation to failure,and a stable ultimate tensile strength.The LX11 alloy had better corrosion resistance than the LX41 alloy.The release rate of the cations(Mg^(2+),Ca^(2+),and Li+)varied significantly with time.The release rate of metallic ions in Hank’s solution cannot reflect the true corrosion rate of Mg-Li-Ca alloys due to the formation of the precipitated corrosion products and their difference in solubility.The dealloying corrosion mechanism of the Mg_(2)Ca phase in Mg-Li-Ca alloys was proposed.