期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Comparison of microstructure,mechanical property,and degradation rate of Mg-1Li-1Ca and Mg-4Li-1Ca alloys 被引量:2
1
作者 Li-Xin Long Fen-Fen Chen +4 位作者 Lan-Yue Cui ze-song wei Hai-Tao Wang Rong-Chang Zeng Yu-Feng Zheng 《Bioactive Materials》 SCIE CSCD 2023年第8期279-291,共13页
Mg-1 wt.%Li-1 wt.%Ca(LX11)and Mg-4 wt.%Li-1 wt.%Ca(LX41)alloys share the same hexagonal closed-packed crystalline structure.However,the differences in microstructure,mechanical properties,and degradation rates between... Mg-1 wt.%Li-1 wt.%Ca(LX11)and Mg-4 wt.%Li-1 wt.%Ca(LX41)alloys share the same hexagonal closed-packed crystalline structure.However,the differences in microstructure,mechanical properties,and degradation rates between the two alloys are not well understood.Hereby,the above three aspects of LX11 and LX41 alloys were studied via optical microscopy,tensile tests,and electrochemical polarization and electrochemical impedance spectroscopy,together with hydrogen evolution.The concentration of the released Mg^(2+),Ca^(2+),and Li+ions was analyzed using a flame atomic absorption spectrophotometer.Results demonstrated that the LX11 alloy was composed of finerα-Mg grains,fewer twins,and smaller volume fractions of the intermetallic phases Mg_(2)Ca than the LX41 alloy.The increasing Li concentration generated a weak decrease in the yield strength of the Mg-Li-Ca alloys,a remarkable increase in elongation to failure,and a stable ultimate tensile strength.The LX11 alloy had better corrosion resistance than the LX41 alloy.The release rate of the cations(Mg^(2+),Ca^(2+),and Li+)varied significantly with time.The release rate of metallic ions in Hank’s solution cannot reflect the true corrosion rate of Mg-Li-Ca alloys due to the formation of the precipitated corrosion products and their difference in solubility.The dealloying corrosion mechanism of the Mg_(2)Ca phase in Mg-Li-Ca alloys was proposed. 展开更多
关键词 Magnesium alloys DEALLOYING Intermetallic compound Biomaterial Ionic release
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部