期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Supercritical fluid-assisted fabrication of C-doped Co_(3)O_(4) nanoparticles based on polymer-coated metal salt nanoreactors for efficient enzyme-mimicking and glucose sensor properties
1
作者 Ze-Wen Kang Jun-Yu Zhang +3 位作者 ze-zhen li Ranjith Kumar Kankala Shi-Bin Wang Ai-Zheng Chen 《Nano Research》 SCIE EI CSCD 2023年第5期7431-7442,共12页
Nanomaterials doped with non-metallic C have attracted tremendous attention as potential nano-artificial enzymes due to their ability to change the energy band structure to improve their intrinsic properties.Herein,we... Nanomaterials doped with non-metallic C have attracted tremendous attention as potential nano-artificial enzymes due to their ability to change the energy band structure to improve their intrinsic properties.Herein,we report a green,facile,efficient,fast strategy to access high-performance nanozymes via supercritical CO_(2)fluid technology-fabricated polymer nanoreactor of poly-(methyl vinyl ether-co-maleic anhydride)(PVM/MA)coated Co(NO_(3))_(2)into C-doped Co_(3)O_(4)(C-Co_(3)O_(4))nanozyme by a onestep calcination process.Converting PVM/MA to C doping into Co_(3)O_(4)shortens the entire lattice constant of the crystal structure,and the overall valence band energy level below the Fermi level shifts toward the lower energy direction.The as-prepared CCo_(3)O_(4)demonstrated significant peroxidase-like catalytic activity,significantly greater than the undoped Co_(3)O_(4)nanoparticle nanozyme.The following density functional theory(DFT)calculations revealed that the doped nano-enzyme catalytic site displayed a unique electronic structure,altering the material surface with more electrons to fill the anti-bond of the two molecular orbitals,significantly improving the peroxidase-like enzyme catalytic and glucose sensor performance.The resultant enzymatic glucose sensing in a linear range of 0.1–0.6 mM with a detection limit of 3.86μM is in line with standard Michaelis–Menten theory.Collectively,this work demonstrates that converting polymers into nanozymes of C-doped form by supercritical CO_(2)fluid technology in a step is an effective strategy for constructing high-performance glucose sensor nanozymes.This cost-effective,reliable,precise system offers the potential for rapid analyte detection,facilitating its application in a variety of fields. 展开更多
关键词 supercritical fluid poly-(methyl vinyl ether-co-maleic anhydride)(PVM/MA) C-doped Co_(3)O_(4) nanozymes density functional theory(DFT)calculation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部