The two-sided matching has been widely applied to the decision-making problems in the field of management.With the limited working experience,the two-sided agents usually cannot provide the preference order directly f...The two-sided matching has been widely applied to the decision-making problems in the field of management.With the limited working experience,the two-sided agents usually cannot provide the preference order directly for the opposite agent,but rather to provide the preference relations in the form of linguistic information.The preference relations based on probabilistic linguistic term sets(PLTSs)not only allowagents to provide the evaluation with multiple linguistic terms,but also present the different preference degrees for linguistic terms.Considering the diversities of the agents,they may provide their preference relations in the form of the probabilistic linguistic preference relation(PLPR)or the probabilistic linguistic multiplicative preference relation(PLMPR).For two-sided matching with the expected time,we first provide the concept of the time satisfaction degree(TSD).Then,we transform the preference relations in different forms into the unified preference relations(u-PRs).The consistency index to measure the consistency of u-PRs is introduced.Besides,the acceptable consistent u-PRs are constructed,and an algorithm is proposed to modify the unacceptable consistent u-PRs.Furthermore,we present the whole two-sided matching decisionmaking process with the acceptable consistent u-PRs.Finally,a case about aviation technology suppliers and demanders matching is presented to exhibit the rationality and practicality of the proposed method.Some analyses and discussions are provided to further demonstrate the feasibility and effectiveness of the proposed method.展开更多
Group decision making plays an important role in various fields of management decision and economics. In this paper, we develop two methods for hesitant fuzzy multiple criteria group decision making with group consens...Group decision making plays an important role in various fields of management decision and economics. In this paper, we develop two methods for hesitant fuzzy multiple criteria group decision making with group consensus in which all the experts use hesitant fuzzy decision matrices (HFDMs) to express their preferences. The aim of this paper is to present two novel consensus models applied in different group decision making situations, which are composed of consensus checking processes, consensus-reaching processes, and selection processes. All the experts make their own judgments on each alternative over multiple criteria by hesitant fuzzy sets, and then the aggregation of each hesitant fuzzy set under each criterion is calculated by the aggregation operators. Furthermore, we can calculate the distance between any two aggregations of hesitant fuzzy sets, based on which the deviation between any two experts is yielded. After introducing the consensus measure, we develop two kinds of consensus-reaching procedures and then propose two step-by-step algorithms for hesitant fuzzy multiple criteria group decision making. A numerical example concerning the selection of selling ways about 'Trade-Ins' for Apple Inc. is provided to illustrate and verify the developed approaches. In this example, the methods which aim to reach a high consensus of all the experts before the selection process can avoid some experts' preference values being too high or too low. After modifying the previous preference information by using our consensus measures, the result of the selection process is much more reasonable.展开更多
This paper presents a new space model developed by general value engineering/value management model. The authors take the function analysis, function optimization and function realization of the development object as ...This paper presents a new space model developed by general value engineering/value management model. The authors take the function analysis, function optimization and function realization of the development object as the basic point, to get the final optimization structure by value evaluation, so as to improve the project quality and reduce the project cost. The final case shows that the application of this model can save about 18% of the time and considerable cost of the usually planned projects under the condition of quality assurance.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.71771155,71571123)the scholarship under the UK-China Joint Research and Innovation Partnership Fund Ph.D.Placement Programme(No.201806240416)the Teacher-Student Joint Innovation Research Fund of Business School of Sichuan University(No.H2018016).
文摘The two-sided matching has been widely applied to the decision-making problems in the field of management.With the limited working experience,the two-sided agents usually cannot provide the preference order directly for the opposite agent,but rather to provide the preference relations in the form of linguistic information.The preference relations based on probabilistic linguistic term sets(PLTSs)not only allowagents to provide the evaluation with multiple linguistic terms,but also present the different preference degrees for linguistic terms.Considering the diversities of the agents,they may provide their preference relations in the form of the probabilistic linguistic preference relation(PLPR)or the probabilistic linguistic multiplicative preference relation(PLMPR).For two-sided matching with the expected time,we first provide the concept of the time satisfaction degree(TSD).Then,we transform the preference relations in different forms into the unified preference relations(u-PRs).The consistency index to measure the consistency of u-PRs is introduced.Besides,the acceptable consistent u-PRs are constructed,and an algorithm is proposed to modify the unacceptable consistent u-PRs.Furthermore,we present the whole two-sided matching decisionmaking process with the acceptable consistent u-PRs.Finally,a case about aviation technology suppliers and demanders matching is presented to exhibit the rationality and practicality of the proposed method.Some analyses and discussions are provided to further demonstrate the feasibility and effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Nos. 61273209, 71501135, 71571123, and 71532007)
文摘Group decision making plays an important role in various fields of management decision and economics. In this paper, we develop two methods for hesitant fuzzy multiple criteria group decision making with group consensus in which all the experts use hesitant fuzzy decision matrices (HFDMs) to express their preferences. The aim of this paper is to present two novel consensus models applied in different group decision making situations, which are composed of consensus checking processes, consensus-reaching processes, and selection processes. All the experts make their own judgments on each alternative over multiple criteria by hesitant fuzzy sets, and then the aggregation of each hesitant fuzzy set under each criterion is calculated by the aggregation operators. Furthermore, we can calculate the distance between any two aggregations of hesitant fuzzy sets, based on which the deviation between any two experts is yielded. After introducing the consensus measure, we develop two kinds of consensus-reaching procedures and then propose two step-by-step algorithms for hesitant fuzzy multiple criteria group decision making. A numerical example concerning the selection of selling ways about 'Trade-Ins' for Apple Inc. is provided to illustrate and verify the developed approaches. In this example, the methods which aim to reach a high consensus of all the experts before the selection process can avoid some experts' preference values being too high or too low. After modifying the previous preference information by using our consensus measures, the result of the selection process is much more reasonable.
文摘This paper presents a new space model developed by general value engineering/value management model. The authors take the function analysis, function optimization and function realization of the development object as the basic point, to get the final optimization structure by value evaluation, so as to improve the project quality and reduce the project cost. The final case shows that the application of this model can save about 18% of the time and considerable cost of the usually planned projects under the condition of quality assurance.