期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fine structure characterization of an explosively-welded GH3535/316H bimetallic plate interface
1
作者 Jia Xiao Ming Li +6 位作者 Jian-ping Liang Li Jiang De-jun Wang Xiang-xi Ye ze-zhong chen Na-xiu Wang Zhi-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第11期1811-1820,共10页
An explosion-welded technology was induced to manufacture the GH3535/316H bimetallic plates to provide a more cost-effective structural material for ultrahigh temperature,molten salt thermal storage systems.The micros... An explosion-welded technology was induced to manufacture the GH3535/316H bimetallic plates to provide a more cost-effective structural material for ultrahigh temperature,molten salt thermal storage systems.The microstructure of the bonding interfaces were extensively investigated by scanning electron microscopy,energy dispersive spectrometry,and an electron probe microanalyzer.The bonding interface possessed a periodic,wavy morphology and was adorned by peninsula-or island-like transition zones.At higher magnification,a matrix recrystallization region,fine grain region,columnar grain region,equiaxed grain region,and shrinkage porosity were observed in the transition zones and surrounding area.Electron backscattered diffraction demonstrated that the strain in the recrystallization region of the GH3535 matrix and transition zone was less than the substrate.Strain concentration occurred at the interface and the solidification defects in the transition zone.The dislocation substructure in 316H near the interface was characterized by electron channeling contrast imaging.A dislocation network was formed in the grains of 316H.The microhardness decreased as the distance from the welding interface increased and the lowest hardness was inside the transition zone. 展开更多
关键词 GH3535/316H bimetallic plate ultrahigh temperature molten salt explosive welding interface structure dislocation substructure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部