期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
TiO_(2) nanofiber-supported copper nanoparticle catalysts for highly efficient methane conversion to C1 oxygenates under mild conditions
1
作者 Wencui Li Yu Ren +9 位作者 zean xie Yipeng Wang Hang Zhang Dianxiang Peng Hengfang Shen Hongfei Shi Jiaxin Cai Peng Wang Tongxin Zhang Zhen Zhao 《Nano Research》 SCIE EI CSCD 2024年第5期3844-3852,共9页
The selective oxidation of methane under mild conditions remains the“Holy Grail of Catalysis”.The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers.Copper ... The selective oxidation of methane under mild conditions remains the“Holy Grail of Catalysis”.The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers.Copper nanoparticles were loaded onto TiO_(2) nanofibers using the photo-deposition method.The resulting catalysts were found to effectively convert methane into C1 oxygenated products under mild conditions.Compared with previously reported catalysts,it delivers a superior performance of up to 2510.7 mmol·g_(Cu)^(-1)·h^(-1) productivity with a selectivity of around 100%at 80℃for 5 min.Microstructure characterizations and density functional theory(DFT)calculations indicate that TiO_(2) in the mixed phase of anatase and rutile significantly increases the Cu^(+)/CuO ratio of the supported Cu species,and this ratio is linearly related to the formation rate of oxygen-containing species.The CuI site promotes the generation of active O species from H_(2)O_(2) dissociation on Cu_(2)O(111).These active O species reduce the energy barrier for breaking the C-H bond of CH_(4),thus boosting the catalytic activity.The methane conversion mechanism was proposed as a methyl radical pathway to form CH_(3)OH and CH_(3)OOH,and then the generated CH_(3)OH is further oxidized to HOCH_(2)OOH. 展开更多
关键词 TiO_(2)nanofiber copper nanoparticles photo-deposition method methane oxidation C1 oxygenates
原文传递
Flour-derived borocarbonitride enriched with boron-oxygen species for the oxidative dehydrogenation of propane to olefins
2
作者 Dong Li Jingying Bi +6 位作者 zean xie Lian Kong Bing Liu Xiaoqiang Fan Xia Xiao Yuxin Miao Zhen Zhao 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第8期2389-2399,共11页
The preparation of porous materials by the simple and low-cost methods is one of the hot topics in materials science.Here,the porous carbon-incorporated BN(P-CBN)was synthesized from the low-cost flour by a fermentati... The preparation of porous materials by the simple and low-cost methods is one of the hot topics in materials science.Here,the porous carbon-incorporated BN(P-CBN)was synthesized from the low-cost flour by a fermentation combined with freezedrying technology and ammonolysis.P-CBN-x samples not only maintain the pores of the fermented dough,but also produce abundant oxygen-containing boron species(B-OH,O-O and B-O).Due to the unique structural advantages,P-CBN-x catalysts exhibit remarkably better catalytic performance than bulk BN for the oxidative dehydrogenation of propane(ODHP)to produce olefins.Attractively,P-CBN-23 obtains high C_(3)H_(8 )conversion of 62.1%and olefin yield of 42.7%.In-situ DRIFTS experiments and DFT calculations demonstrate the B-OO-B species in P-CBN-x framework is the most active species for the C3H8activation and the B-O…O-B species can be readily regenerated by O_(2),thus promoting the conversion of propane to olefin. 展开更多
关键词 flour fermentation carbon-incorporated boron nitrides oxidative dehydrogenation PROPANE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部