A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The e...A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The equations that govern natural convection in water are solved by the finite volume method and Thomas’salgorithm. The adequacy between the velocity and pressure fields is ensured by the SIMPLE algorithm. We are going to evaluate the water losses by evaporation from three dams in the Nakanbé basin in Burkina Faso for a period of thirty years, that is to say from January 1, 1991, to March 15, 2020. The three dams have a rate of evaporation greater than 40% of the volume of water stored. Indeed the rate of evaporation in each dam increases with the water filling rate in the reservoir: we have observed the following results for each dam in the Nakanbé basin;for the date of 02/27/1988 to 03/13/2020., the Loumbila dam received a total volume of stored water of 22.02 Mm<sup>3</sup> and 10.57 Mm<sup>3</sup> as the total volume of water evaporated at the same date. At the Ouaga dam (2 + 3), it stored a water volume of 4.06 Mm<sup>3</sup> and evaporated 2.03 Mm<sup>3</sup> of its storage volume from 01/01/1988 to 05/07/2016. Finally, with regard to the Bagré dam, it stored 745.16 Mm<sup>3</sup> of water and 365.13 Mm<sup>3</sup> as the volume of water evaporated from 01/01/1993 to 03/31/2020.展开更多
The accelerated depletion of oil reserves and the often exorbitant cost of fossil fuels contribute to the development of fuels from renewable sources. The objective of this work is to analyze the influence of the prop...The accelerated depletion of oil reserves and the often exorbitant cost of fossil fuels contribute to the development of fuels from renewable sources. The objective of this work is to analyze the influence of the properties of renewable fuels on their evaporation in natural convection, their combustion and their use in internal combustion engines. A summary of the various numerical and experimental works from the literature has been presented in this work. This work focuses on the numerical modelling of the natural convection evaporation of an isolated drop of a liquid fuel in natural convection. The transfers in the liquid and vapour phases are described by the conservation equations of mass and species, momentum and energy. The main feature of this work is the consideration of advection, azimuthal angle and thickness of the vapour phase of the drop during evaporation of the drop.展开更多
This work deals with the modeling of the unsteady Newtonian fluid flow associated with an open cylindrical reservoir.This reservoir presents a hole on the right bottom wall.Fluid volume variation,heat and mass transfe...This work deals with the modeling of the unsteady Newtonian fluid flow associated with an open cylindrical reservoir.This reservoir presents a hole on the right bottom wall.Fluid volume variation,heat and mass transfers are neglected.The unsteady governing equations are based on the conservation of mass and momentum.A finite volume technique is used to solve the non-dimensional equations and related boundary conditions.The algebraic system of equations resulting from the discretization process are solved by means of the THOMAS algorithm.For pressure-velocity coupling,the SIMPLE algorithm(Semi Implicit Method for Pressure Linked Equations)is used.Results for laminar flow(Re<1000),including the pressure and velocities profiles as well as the streamlines in the reservoir are presented.Moreover,the effects of the D/d and H0/D ratios and Reynolds number Re on the fluid flow are discussed.It is shown that the velocities and pressure depend essentially on the reservoir size.To validate the model,the present results have been compared with Zhou et al.’s results,Poiseuille’s and Bernoulli’s exact solution.展开更多
文摘A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The equations that govern natural convection in water are solved by the finite volume method and Thomas’salgorithm. The adequacy between the velocity and pressure fields is ensured by the SIMPLE algorithm. We are going to evaluate the water losses by evaporation from three dams in the Nakanbé basin in Burkina Faso for a period of thirty years, that is to say from January 1, 1991, to March 15, 2020. The three dams have a rate of evaporation greater than 40% of the volume of water stored. Indeed the rate of evaporation in each dam increases with the water filling rate in the reservoir: we have observed the following results for each dam in the Nakanbé basin;for the date of 02/27/1988 to 03/13/2020., the Loumbila dam received a total volume of stored water of 22.02 Mm<sup>3</sup> and 10.57 Mm<sup>3</sup> as the total volume of water evaporated at the same date. At the Ouaga dam (2 + 3), it stored a water volume of 4.06 Mm<sup>3</sup> and evaporated 2.03 Mm<sup>3</sup> of its storage volume from 01/01/1988 to 05/07/2016. Finally, with regard to the Bagré dam, it stored 745.16 Mm<sup>3</sup> of water and 365.13 Mm<sup>3</sup> as the volume of water evaporated from 01/01/1993 to 03/31/2020.
文摘The accelerated depletion of oil reserves and the often exorbitant cost of fossil fuels contribute to the development of fuels from renewable sources. The objective of this work is to analyze the influence of the properties of renewable fuels on their evaporation in natural convection, their combustion and their use in internal combustion engines. A summary of the various numerical and experimental works from the literature has been presented in this work. This work focuses on the numerical modelling of the natural convection evaporation of an isolated drop of a liquid fuel in natural convection. The transfers in the liquid and vapour phases are described by the conservation equations of mass and species, momentum and energy. The main feature of this work is the consideration of advection, azimuthal angle and thickness of the vapour phase of the drop during evaporation of the drop.
文摘This work deals with the modeling of the unsteady Newtonian fluid flow associated with an open cylindrical reservoir.This reservoir presents a hole on the right bottom wall.Fluid volume variation,heat and mass transfers are neglected.The unsteady governing equations are based on the conservation of mass and momentum.A finite volume technique is used to solve the non-dimensional equations and related boundary conditions.The algebraic system of equations resulting from the discretization process are solved by means of the THOMAS algorithm.For pressure-velocity coupling,the SIMPLE algorithm(Semi Implicit Method for Pressure Linked Equations)is used.Results for laminar flow(Re<1000),including the pressure and velocities profiles as well as the streamlines in the reservoir are presented.Moreover,the effects of the D/d and H0/D ratios and Reynolds number Re on the fluid flow are discussed.It is shown that the velocities and pressure depend essentially on the reservoir size.To validate the model,the present results have been compared with Zhou et al.’s results,Poiseuille’s and Bernoulli’s exact solution.