Dielectric capacitors,serving as the indispensable components in advanced high-power energy storage devices,have attracted ever-increasing attention with the rapid development of science and technology.Among various d...Dielectric capacitors,serving as the indispensable components in advanced high-power energy storage devices,have attracted ever-increasing attention with the rapid development of science and technology.Among various dielectric capacitors,ceramic capacitors with perovskite structures show unique advantages in actual application,e.g.,excellent adaptability in high-temperature environments.And the optimization of their energy storage performance has become a hot research topic recently.This review presents the basic principles of energy storage in dielectric ceramics and introduces multi-scale synergic optimization strategies according to the key factors for superior energy storage performance.By summarizing the common points in numerous works,several universal modification strategies are reviewed,and future research on fatigue fracture of ceramic capacitors under multi-field including but not limited to force,electric,and thermal coupling conditions is also anticipated.展开更多
Lead-free antiferroelectric ceramics with high energy storage performance show great potential in pulsed power capacitors.However,poor breakdown strength and antiferroelectric stability are the two main drawbacks that...Lead-free antiferroelectric ceramics with high energy storage performance show great potential in pulsed power capacitors.However,poor breakdown strength and antiferroelectric stability are the two main drawbacks that limit the energy storage performance of antiferroelectric ceramics.Herein,highquality(Ag_(1-x)Na_(x))(Nb_(1-x)Ta_(x))O_(3)ceramics were prepared by the tape casting process.The breakdown strength was greatly improved as a result of the high density and fine grains,while the antiferroelectric stability was enhanced owning to the M2 phase.Benefiting from the synergistic improvement in breakdown strength and antiferroelectric stability,(Ag_(0.80)Na_(0.20))(Nb_(0.80)Ta_(0.20))O_(3)ceramic reveals a benign energy storage performance of W_(rec)=5.8 J/cm^(3)and h=61.7%with good temperature stability,frequency stability and cycling reliability.It is also found that the high applied electric field can promote the M2-M3 phase transition,which may provide ideas to improve the thermal stability of the energy storage performance in AgNbO_(3)-based ceramics.展开更多
基金supported by the National Natural Science Foundation of China(52073144 and 12004181)the Natural Science Foundation of Jiangsu Province(BK20201301 and BK20200473)+2 种基金State Key Laboratory of New Ceramics and Fine Processing,Tsinghua University(KF202114)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics(MCMS-I-0522G02)a Project Funded by a project of the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.
文摘Dielectric capacitors,serving as the indispensable components in advanced high-power energy storage devices,have attracted ever-increasing attention with the rapid development of science and technology.Among various dielectric capacitors,ceramic capacitors with perovskite structures show unique advantages in actual application,e.g.,excellent adaptability in high-temperature environments.And the optimization of their energy storage performance has become a hot research topic recently.This review presents the basic principles of energy storage in dielectric ceramics and introduces multi-scale synergic optimization strategies according to the key factors for superior energy storage performance.By summarizing the common points in numerous works,several universal modification strategies are reviewed,and future research on fatigue fracture of ceramic capacitors under multi-field including but not limited to force,electric,and thermal coupling conditions is also anticipated.
基金This work was supported by the National Natural Science Foundation of China(No.51802068 and No.52073144)the Natural Science Foundation of Hebei Province,China(No.E2021201044)+1 种基金the Natural Science Foundation of Jiangsu Province,China(No.BK20201301)the State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(No.KF202114).
文摘Lead-free antiferroelectric ceramics with high energy storage performance show great potential in pulsed power capacitors.However,poor breakdown strength and antiferroelectric stability are the two main drawbacks that limit the energy storage performance of antiferroelectric ceramics.Herein,highquality(Ag_(1-x)Na_(x))(Nb_(1-x)Ta_(x))O_(3)ceramics were prepared by the tape casting process.The breakdown strength was greatly improved as a result of the high density and fine grains,while the antiferroelectric stability was enhanced owning to the M2 phase.Benefiting from the synergistic improvement in breakdown strength and antiferroelectric stability,(Ag_(0.80)Na_(0.20))(Nb_(0.80)Ta_(0.20))O_(3)ceramic reveals a benign energy storage performance of W_(rec)=5.8 J/cm^(3)and h=61.7%with good temperature stability,frequency stability and cycling reliability.It is also found that the high applied electric field can promote the M2-M3 phase transition,which may provide ideas to improve the thermal stability of the energy storage performance in AgNbO_(3)-based ceramics.