Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,f...Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,from Landsat-8(L8)and Sentinel-2(S2),have been proven useful in mapping general forest types,yet we do not know quantitatively how their spectral features(e.g.,red-edge)and temporal frequency of data acquisitions(e.g.,16-day vs.5-day)contribute to plantation forest mapping to the species level.Moreover,it is unclear to what extent the fusion of L8 and S2 will result in improvements in tree species mapping of northern plantation forests in China.Methods:We designed three sets of classification experiments(i.e.,single-date,multi-date,and spectral-temporal)to evaluate the performances of L8 and S2 data for mapping keystone timber tree species in northern China.We first used seven pairs of L8 and S2 images to evaluate the performances of L8 and S2 key spectral features for separating these tree species across key growing stages.Then we extracted the spectral-temporal features from all available images of different temporal frequency of data acquisition(i.e.,L8 time series,S2 time series,and fusion of L8 and S2)to assess the contribution of image temporal frequency on the accuracy of tree species mapping in the study area.Results:1)S2 outperformed L8 images in all classification experiments,with or without the red edge bands(0.4%–3.4%and 0.2%–4.4%higher for overall accuracy and macro-F1,respectively);2)NDTI(the ratio of SWIR1 minus SWIR2 to SWIR1 plus SWIR2)and Tasseled Cap coefficients were most important features in all the classifications,and for time-series experiments,the spectral-temporal features of red band-related vegetation indices were most useful;3)increasing the temporal frequency of data acquisition can improve overall accuracy of tree species mapping for up to 3.2%(from 90.1%using single-date imagery to 93.3%using S2 time-series),yet similar overall accuracies were achieved using S2 time-series(93.3%)and the fusion of S2 and L8(93.2%).Conclusions:This study quantifies the contributions of L8 and S2 spectral and temporal features in mapping keystone tree species of northern plantation forests in China and suggests that for mapping tree species in China's northern plantation forests,the effects of increasing the temporal frequency of data acquisition could saturate quickly after using only two images from key phenological stages.展开更多
Anaerobic process is regarded as a green and sustainable process due to low carbon emission and minimal energy consumption in wastewater treatment plants(WWTPs).However,some water quality metrics are not measurable in...Anaerobic process is regarded as a green and sustainable process due to low carbon emission and minimal energy consumption in wastewater treatment plants(WWTPs).However,some water quality metrics are not measurable in real time,thus influencing the judgment of the operators and may increase energy consumption and carbon emission.One of the solutions is using a soft-sensor prediction technique.This article introduces a water quality soft-sensor prediction method based on Bidirectional Gated Recurrent Unit(BiGRU)combined with Gaussian Progress Regression(GPR)optimized by Tree-structured Parzen Estimator(TPE).TPE automatically optimizes the hyperparameters of BiGRU,and BiGRU is trained to obtain the point prediction with GPR for the interval prediction.Then,a case study applying this prediction method for an actual anaerobic process(2500 m^(3)/d)is carried out.Results show that TPE effectively optimizes the hyperparameters of BiGRU.For point prediction of CODeff and biogas yield,R^(2)values of BiGRU,which are 0.973 and 0.939,respectively,are increased by 1.03%–7.61%and 1.28%–10.33%,compared with those of other models,and the valid prediction interval can be obtained.Besides,the proposed model is assessed as a reliable model for anaerobic process through the probability prediction and reliable evaluation.It is expected to provide high accuracy and reliable water quality prediction to offer basis for operators in WWTPs to control the reactor and minimize carbon emission and energy consumption.展开更多
In this paper, an improved sol-gel method was suggested to obtain high-concentration LiTaO3 precursor solution for simplified experimental conditions and thicker films, by mixing lithium acetate and tantalum ethoxide ...In this paper, an improved sol-gel method was suggested to obtain high-concentration LiTaO3 precursor solution for simplified experimental conditions and thicker films, by mixing lithium acetate and tantalum ethoxide in a 1, 2-Propylene glycol solution. Compared to traditional methods, the process was done without weak acidic solution and absolute dry experimental condition. Results of a comparative study of LiTaO3 thin films derived by the improved sol-gel process and a traditional process using 2-methoxy ethanol as solvent were presented. Nano-crystalline LiTaO3 films with rhombohedral structures were formed in both methods after annealing at 650℃ for 5 min. The thickness of each LiTaO3 layer coated onto the substrate increased from 25 nm to 110 nm when 2-methoxy ethanol was replaced by 1, 2-Propylene glycol. LiTaO3 films with a stronger preferential orientation were obtained in 1, 2-Propylene glycol due to its higher boiling point and slower volatilization rate. On the other hand, the diffraction peak intensity of LiTaO3 thin films prepared using 1, 2-Propylene glycol was weaker than that of the films prepared using 2-methoxy ethanol due to decreased times of annealing.展开更多
基金supported by National Natural Science Foundation of China(Grant No.41901382)Open Fund of State Key Laboratory of Remote Sensing Science(Grant No.OFSLRSS201917)the HZAU research startup fund(No.11041810340,No.11041810341).
文摘Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,from Landsat-8(L8)and Sentinel-2(S2),have been proven useful in mapping general forest types,yet we do not know quantitatively how their spectral features(e.g.,red-edge)and temporal frequency of data acquisitions(e.g.,16-day vs.5-day)contribute to plantation forest mapping to the species level.Moreover,it is unclear to what extent the fusion of L8 and S2 will result in improvements in tree species mapping of northern plantation forests in China.Methods:We designed three sets of classification experiments(i.e.,single-date,multi-date,and spectral-temporal)to evaluate the performances of L8 and S2 data for mapping keystone timber tree species in northern China.We first used seven pairs of L8 and S2 images to evaluate the performances of L8 and S2 key spectral features for separating these tree species across key growing stages.Then we extracted the spectral-temporal features from all available images of different temporal frequency of data acquisition(i.e.,L8 time series,S2 time series,and fusion of L8 and S2)to assess the contribution of image temporal frequency on the accuracy of tree species mapping in the study area.Results:1)S2 outperformed L8 images in all classification experiments,with or without the red edge bands(0.4%–3.4%and 0.2%–4.4%higher for overall accuracy and macro-F1,respectively);2)NDTI(the ratio of SWIR1 minus SWIR2 to SWIR1 plus SWIR2)and Tasseled Cap coefficients were most important features in all the classifications,and for time-series experiments,the spectral-temporal features of red band-related vegetation indices were most useful;3)increasing the temporal frequency of data acquisition can improve overall accuracy of tree species mapping for up to 3.2%(from 90.1%using single-date imagery to 93.3%using S2 time-series),yet similar overall accuracies were achieved using S2 time-series(93.3%)and the fusion of S2 and L8(93.2%).Conclusions:This study quantifies the contributions of L8 and S2 spectral and temporal features in mapping keystone tree species of northern plantation forests in China and suggests that for mapping tree species in China's northern plantation forests,the effects of increasing the temporal frequency of data acquisition could saturate quickly after using only two images from key phenological stages.
基金This research was supported by the National Natural Science Foundation of China(Nos.41977300 and 41907297)the Science and Technology Program of Guangzhou(China)(No.202002020055)the Fujian Provincial Natural Science Foundation(China)(No.2020I1001).
文摘Anaerobic process is regarded as a green and sustainable process due to low carbon emission and minimal energy consumption in wastewater treatment plants(WWTPs).However,some water quality metrics are not measurable in real time,thus influencing the judgment of the operators and may increase energy consumption and carbon emission.One of the solutions is using a soft-sensor prediction technique.This article introduces a water quality soft-sensor prediction method based on Bidirectional Gated Recurrent Unit(BiGRU)combined with Gaussian Progress Regression(GPR)optimized by Tree-structured Parzen Estimator(TPE).TPE automatically optimizes the hyperparameters of BiGRU,and BiGRU is trained to obtain the point prediction with GPR for the interval prediction.Then,a case study applying this prediction method for an actual anaerobic process(2500 m^(3)/d)is carried out.Results show that TPE effectively optimizes the hyperparameters of BiGRU.For point prediction of CODeff and biogas yield,R^(2)values of BiGRU,which are 0.973 and 0.939,respectively,are increased by 1.03%–7.61%and 1.28%–10.33%,compared with those of other models,and the valid prediction interval can be obtained.Besides,the proposed model is assessed as a reliable model for anaerobic process through the probability prediction and reliable evaluation.It is expected to provide high accuracy and reliable water quality prediction to offer basis for operators in WWTPs to control the reactor and minimize carbon emission and energy consumption.
基金supported by National Natural Science Foundation of China (Nos. 61006036 and 61235006)New Century Excellent Talents in University (No.NCET-10-0299)
文摘In this paper, an improved sol-gel method was suggested to obtain high-concentration LiTaO3 precursor solution for simplified experimental conditions and thicker films, by mixing lithium acetate and tantalum ethoxide in a 1, 2-Propylene glycol solution. Compared to traditional methods, the process was done without weak acidic solution and absolute dry experimental condition. Results of a comparative study of LiTaO3 thin films derived by the improved sol-gel process and a traditional process using 2-methoxy ethanol as solvent were presented. Nano-crystalline LiTaO3 films with rhombohedral structures were formed in both methods after annealing at 650℃ for 5 min. The thickness of each LiTaO3 layer coated onto the substrate increased from 25 nm to 110 nm when 2-methoxy ethanol was replaced by 1, 2-Propylene glycol. LiTaO3 films with a stronger preferential orientation were obtained in 1, 2-Propylene glycol due to its higher boiling point and slower volatilization rate. On the other hand, the diffraction peak intensity of LiTaO3 thin films prepared using 1, 2-Propylene glycol was weaker than that of the films prepared using 2-methoxy ethanol due to decreased times of annealing.