期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Automatic detection of breast lesions in automated 3D breast ultrasound with cross-organ transfer learning
1
作者 lingyun BAO Zhengrui HUANG +7 位作者 zehui lin Yue SUN Hui CHEN You LI Zhang LI Xiaochen YUAN lin XU Tao TAN 《虚拟现实与智能硬件(中英文)》 EI 2024年第3期239-251,共13页
Background Deep convolutional neural networks have garnered considerable attention in numerous machine learning applications,particularly in visual recognition tasks such as image and video analyses.There is a growing... Background Deep convolutional neural networks have garnered considerable attention in numerous machine learning applications,particularly in visual recognition tasks such as image and video analyses.There is a growing interest in applying this technology to diverse applications in medical image analysis.Automated three dimensional Breast Ultrasound is a vital tool for detecting breast cancer,and computer-assisted diagnosis software,developed based on deep learning,can effectively assist radiologists in diagnosis.However,the network model is prone to overfitting during training,owing to challenges such as insufficient training data.This study attempts to solve the problem caused by small datasets and improve model detection performance.Methods We propose a breast cancer detection framework based on deep learning(a transfer learning method based on cross-organ cancer detection)and a contrastive learning method based on breast imaging reporting and data systems(BI-RADS).Results When using cross organ transfer learning and BIRADS based contrastive learning,the average sensitivity of the model increased by a maximum of 16.05%.Conclusion Our experiments have demonstrated that the parameters and experiences of cross-organ cancer detection can be mutually referenced,and contrastive learning method based on BI-RADS can improve the detection performance of the model. 展开更多
关键词 Breast ultrasound Automated 3D breast ultrasound Breast cancers Deep learning Transfer learning Convolutional neural networks Computer-aided diagnosis Cross organ learning
下载PDF
Equivalent Hamiltonian Equations Modelling and Energy Function Construction for MMC-HVDC in Hybrid AC/DC Power Systems 被引量:1
2
作者 Yang Liu zehui lin +2 位作者 Kaishun Xiahou Yuqing lin Q.H.Wu 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第4期821-831,共11页
This paper proposes an equivalent Hamiltonian equations model for the modular multilevel converter-based high-voltage direct-current(MMC-HVDC)transmission system,and constructs an energy function for multi-machine pow... This paper proposes an equivalent Hamiltonian equations model for the modular multilevel converter-based high-voltage direct-current(MMC-HVDC)transmission system,and constructs an energy function for multi-machine power systems with MMC-HVDC transmission lines.The equivalent Hamiltonian equations model is verified to be able to track the power output dynamics of the full model of an MMC-HVDC transmission system.Both theoretical and numerical studies have been undertaken to validate that the energy function proposed for hybrid AC/DC systems satisfies the conditions of an energy function.The work of this paper bridges the gap between the well-developed direct methods of transient stability analysis and power systems with MMC-HVDC transmission lines. 展开更多
关键词 Energy function equivalent Hamiltonian equations model hybrid AC/DC power system MMC-HVDC transient stability
原文传递
Fault Ride-through Hybrid Controller for MMC-HVDC Transmission System via Switching Control Units Based on Bang-bang Funnel Controller 被引量:1
3
作者 Yang Liu zehui lin +1 位作者 Chenying Xu Lei Wang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第2期599-610,共12页
This paper proposes a fault ride-through hybrid controller(FRTHC)for modular multi-level converter based high-voltage direct current(MMC-HVDC)transmission systems.The FRTHC comprises four loops of cascading switching ... This paper proposes a fault ride-through hybrid controller(FRTHC)for modular multi-level converter based high-voltage direct current(MMC-HVDC)transmission systems.The FRTHC comprises four loops of cascading switching control units(SCUs).Each SCU switches between a bang-bang funnel controller(BBFC)and proportional-integral(PI)control loop according to a state-dependent switching law.The BBFC can utilize the full control capability of each control loop using three-value control signals with the maximum available magnitude.A state-dependent switching law is designed for each SCU to guarantee its structural stability.Simulation studies are conducted to verify the superior fault ride-through capability of the MMC-HVDC transmission system controlled by FRTHC,in comparison to that controlled by a vector controller(VC)and a VC with DC voltage droop control(VDRC). 展开更多
关键词 Bang-bang funnel controller(BBFC) fault ride-through hybrid controller modular multi-level converter based high-voltage direct-current(MMC-HVDC) switching control unit
原文传递
On the State-dependent Switched Energy Functions of DFIG-based Wind Power Generation Systems 被引量:4
4
作者 Yang Liu zehui lin +2 位作者 Kaishun Xiahou Mengshi Li Q.H.Wu 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2020年第2期318-328,共11页
This paper proposes a novel state-dependent switched energy function(SdSEF)for general nonlinear autonomous systems,and constructs an SdSEF for doubly-fed induction generator(DFIG)-based wind power generation systems(... This paper proposes a novel state-dependent switched energy function(SdSEF)for general nonlinear autonomous systems,and constructs an SdSEF for doubly-fed induction generator(DFIG)-based wind power generation systems(WPGSs).Different from the conventional energy function,SdSEF is a piece-wise continuous function,and it satisfies the conditions of conventional energy functions on each of its continuous segments.SdSEF is designed to bridge the gap between the well-developed energy function theory and the description of system energy of complex nonlinear systems,such as power electronics converter systems.The stability criterion of nonlinear autonomous systems is investigated with SdSEF,and mathematical proof is presented.The SdSEF of a typical DFIGbased WPGS is simulated in the whole processes of a grid fault and fault recovery.Simulation results verify the negativeness of the derivative of each continuous segment of the SdSEF. 展开更多
关键词 Doubly-fed induction generator state-dependent switched energy function wind power generation system
原文传递
Constructing an Energy Function for Power Systems with DFIGWT Generation Based on a Synchronous-generator-mimicking Model 被引量:2
5
作者 Yang Liu Chenying Xu +2 位作者 zehui lin Kaishun Xiahou Q.H.Wu 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第1期64-75,共12页
In this paper we construct an energy function for multi-machine power systems with doubly-fed induction generator-based wind turbine(DFIGWT)according to a synchronous-generator-mimicking(SGM)model of the DFIGWT.An SGM... In this paper we construct an energy function for multi-machine power systems with doubly-fed induction generator-based wind turbine(DFIGWT)according to a synchronous-generator-mimicking(SGM)model of the DFIGWT.An SGM model is proposed to approximate the dynamics of a DFIGWT.Similar to the modelling of a synchronous generator(SG),the internal dynamics of a DFIGWT are also described with differential equations of newly constructed virtual rotor angle and internal electromotive force(EMF)in the SGM model.Moreover,the power flow of a DFIGWT is expressed by nonlinear functions of its virtual rotor angle and internal EMF.The SGM model bridges the gap between the irregular and complex modelling of DFIGWTs and the well-developed energy function construction techniques for SG models.Based on the SGM model,a numerical energy function is constructed for power systems with DFIGWT generation.Both theoretical analysis and numerical studies were undertaken to validate that the proposed energy function satisfies the necessary conditions for an energy function of a power system. 展开更多
关键词 DFIGWT energy function multi-machine power systems synchronous-generator-mimicking model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部