The problem of cavity stability widely exists in deep underground engineering and energy exploitation.First,the stress field of the surrounding rock under the uniform stress field is deduced based on a post-peak stren...The problem of cavity stability widely exists in deep underground engineering and energy exploitation.First,the stress field of the surrounding rock under the uniform stress field is deduced based on a post-peak strength drop model considering the rock’s characteristics of constant modulus and double moduli.Then,the orthogonal non-associative flow rule is used to establish the displacement of the surrounding rock under constant modulus and double moduli,respectively,considering the stiffness degradation and dilatancy effects in the plastic region and assuming that the elastic strain in the plastic region satisfies the elastic constitutive relationship.Finally,the evolution of the displacement in the surrounding rock is analyzed under the effects of the double modulus characteristics,the strength drop,the stiffness degradation,and the dilatancy.The results show that the displacement solutions of the surrounding rock under constant modulus and double moduli have a unified expression.The coefficients of the expression are related to the stress field of the original rock,the elastic constant of the surrounding rock,the strength parameters,and the dilatancy angle.The strength drop,the stiffness degradation,and the dilatancy effects all have effects on the displacement.The effects can be characterized by quantitative relationships.展开更多
According to different geological conditions and engineering disturbance,three dimensional numerical models of anchored jointed rock mass with two kinds of boundary conditions of constant normal load(CNL)and constant ...According to different geological conditions and engineering disturbance,three dimensional numerical models of anchored jointed rock mass with two kinds of boundary conditions of constant normal load(CNL)and constant normal stiffness(CNS)were constructed considering the ductility damage of rockbolt,the stiffness degradation of grouting layer and the joint surface roughness.The effects of anchorage angle,joint surface morphology,and boundary conditions on the shear performance of anchorage system were analyzed,and the failure characteristics under different working conditions were revealed.Finally,the analytical solution of shear strength of anchored system was established.Results show that the larger the anchorage angle is,the more serious the necking phenomenon of rockbolt will be.The damage degree of the bonding layer and the horizontal displacement of the bedding rock mass decrease with the increase of the joint surface roughness.The CNL condition is to instantaneously apply high normal stress,and the CNS condition is to gradually form a high normal stress environment through the superposition of increment on the basis of the initial value,which can resist greater transverse load.This is equivalent to enhancing the ductility of the rockbolt.The shear strength of the system increases with the increase of normal stress and normal stiffness.Ignoring the normal stiffness will underestimate the shear strength.展开更多
Comprehensive research methods such as literature research,theoretical analysis,numerical simulations and field monitoring have been used to analyze the disasters and characteristics caused by the linkage failure and ...Comprehensive research methods such as literature research,theoretical analysis,numerical simulations and field monitoring have been used to analyze the disasters and characteristics caused by the linkage failure and instability of the residual coal pillars-rock strata in multi-seam mining.The effective monitoring area and monitoring design method of linkage instability of residual coal pillar-rock strata in multi-seam mining have been identified.The evaluation index and the risk assessment method of disaster risk have been established and the project cases have been applied and validated.The results show that:①The coal pillar will not only cause disaster in singleseam mining,but also more easily cause disaster in multi-seam mining.The instability of coal pillars can cause not only dynamical disasters such as rock falls and mine earthquakes,but also cause surface subsidence and other disasters.②When monitoring the linkage instability of residual coal pillar-rock strata,it is not only necessary to consider the monitoring of the apply load body(key block),the transition body(residual coal pillar)and the carrier body(interlayer rock and working face),but also to strengthen the monitoring of the fracture development height(linkage body).③According to the principles of objectivity,easy access and quantification,combined with investigation,analysis,and production and geological characteristics of this mining area,the main evaluation indexes of the degree of disaster caused by linkage instability of residual coal pillar-rock strata are determined as:microseismic energy,residual coal pillar damage degree,fracture development height.And the evaluation index classification table was also given.④According to the measured value of the evaluation index,the fuzzy comprehensive evaluation method was used to calculate the disaster risk degree in the studied mine belongs to class III,that is,medium risk level.The corresponding pressure relief technology was adopted on site,which achieved a good control effect,and also verified the accuracy and effectiveness of the risk evaluation results.展开更多
In this paper,a physical model of coal roadway which is clamped by upper and lower softrock with extra thickness was built according to the characteristics of soft rock strata in china's western mining area.Then,a...In this paper,a physical model of coal roadway which is clamped by upper and lower softrock with extra thickness was built according to the characteristics of soft rock strata in china's western mining area.Then,a series of orthogonal numerical experiments were carried out by selecting the strength and stiffness parameters of soft rock and coal seam as well as the in situ stress of soft rock strata as experimental factors and roadway displacements(convergence displacements of sides,displacement of roof to floor)as experimental indexes.By constructing the F statistics with different inspection levels,evaluation method for influence of the experimental factors on stability indexes were defined.Thus,influence degrees of specified parameters on the stability of roadway were divided into five classes as follows:highly significant influence,significant influence,relatively significant influence,little significant influence,and no influence respectively which realize the quantitative analysis of the influence degrees of experimental factors.The finite element calculation results showed that main failure mode of coal roadway that usually showed as tension failure of coal seam in roof and deformation factors of coal seam had the most remarkable effect on roadway displacements.The conclusions provide theoretical basis for further analysis of the mechanism of"roof burst"in roadway maintenance.展开更多
基金Project supported by the National Natural Science Foundation of China and Shandong Province Joint Program(No.U1806209)the National Natural Science Foundation of China(Nos.51774196 and 51774194)and Shandong University of Science and Technology(SDUST)Research Fund(No.2019TDJH101)。
文摘The problem of cavity stability widely exists in deep underground engineering and energy exploitation.First,the stress field of the surrounding rock under the uniform stress field is deduced based on a post-peak strength drop model considering the rock’s characteristics of constant modulus and double moduli.Then,the orthogonal non-associative flow rule is used to establish the displacement of the surrounding rock under constant modulus and double moduli,respectively,considering the stiffness degradation and dilatancy effects in the plastic region and assuming that the elastic strain in the plastic region satisfies the elastic constitutive relationship.Finally,the evolution of the displacement in the surrounding rock is analyzed under the effects of the double modulus characteristics,the strength drop,the stiffness degradation,and the dilatancy.The results show that the displacement solutions of the surrounding rock under constant modulus and double moduli have a unified expression.The coefficients of the expression are related to the stress field of the original rock,the elastic constant of the surrounding rock,the strength parameters,and the dilatancy angle.The strength drop,the stiffness degradation,and the dilatancy effects all have effects on the displacement.The effects can be characterized by quantitative relationships.
基金supported by the National Natural Science Foundation of China(Grant Nos.51774196 and 52074169).
文摘According to different geological conditions and engineering disturbance,three dimensional numerical models of anchored jointed rock mass with two kinds of boundary conditions of constant normal load(CNL)and constant normal stiffness(CNS)were constructed considering the ductility damage of rockbolt,the stiffness degradation of grouting layer and the joint surface roughness.The effects of anchorage angle,joint surface morphology,and boundary conditions on the shear performance of anchorage system were analyzed,and the failure characteristics under different working conditions were revealed.Finally,the analytical solution of shear strength of anchored system was established.Results show that the larger the anchorage angle is,the more serious the necking phenomenon of rockbolt will be.The damage degree of the bonding layer and the horizontal displacement of the bedding rock mass decrease with the increase of the joint surface roughness.The CNL condition is to instantaneously apply high normal stress,and the CNS condition is to gradually form a high normal stress environment through the superposition of increment on the basis of the initial value,which can resist greater transverse load.This is equivalent to enhancing the ductility of the rockbolt.The shear strength of the system increases with the increase of normal stress and normal stiffness.Ignoring the normal stiffness will underestimate the shear strength.
基金the financial support by the National Natural Science Foundation of China(Nos.52304093,52074168,52079068,41941019)Shandong Province Key Research and Development Program(No.2019SDZY02)+4 种基金Shandong Taishan Scholars Climbing Program(No.tspd20210313)State Key Laboratory of Hydroscience and Engineering foundation(No.2021-KY-04)Natural Science Foundation of Shandong Province Outstanding Youth Fund project(No.ZQ2022YQ49)the Taishan Scholars Project Special Fund(No.tsqn202211150)the Anhui Engineering Research Center of Exploitation and Utilization of Closed/Abandoned Mine Resources(No.EUCMR202205).
文摘Comprehensive research methods such as literature research,theoretical analysis,numerical simulations and field monitoring have been used to analyze the disasters and characteristics caused by the linkage failure and instability of the residual coal pillars-rock strata in multi-seam mining.The effective monitoring area and monitoring design method of linkage instability of residual coal pillar-rock strata in multi-seam mining have been identified.The evaluation index and the risk assessment method of disaster risk have been established and the project cases have been applied and validated.The results show that:①The coal pillar will not only cause disaster in singleseam mining,but also more easily cause disaster in multi-seam mining.The instability of coal pillars can cause not only dynamical disasters such as rock falls and mine earthquakes,but also cause surface subsidence and other disasters.②When monitoring the linkage instability of residual coal pillar-rock strata,it is not only necessary to consider the monitoring of the apply load body(key block),the transition body(residual coal pillar)and the carrier body(interlayer rock and working face),but also to strengthen the monitoring of the fracture development height(linkage body).③According to the principles of objectivity,easy access and quantification,combined with investigation,analysis,and production and geological characteristics of this mining area,the main evaluation indexes of the degree of disaster caused by linkage instability of residual coal pillar-rock strata are determined as:microseismic energy,residual coal pillar damage degree,fracture development height.And the evaluation index classification table was also given.④According to the measured value of the evaluation index,the fuzzy comprehensive evaluation method was used to calculate the disaster risk degree in the studied mine belongs to class III,that is,medium risk level.The corresponding pressure relief technology was adopted on site,which achieved a good control effect,and also verified the accuracy and effectiveness of the risk evaluation results.
基金supported by the National Natural Science Foundation of China(Grant No.51174128)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20123718110007).
文摘In this paper,a physical model of coal roadway which is clamped by upper and lower softrock with extra thickness was built according to the characteristics of soft rock strata in china's western mining area.Then,a series of orthogonal numerical experiments were carried out by selecting the strength and stiffness parameters of soft rock and coal seam as well as the in situ stress of soft rock strata as experimental factors and roadway displacements(convergence displacements of sides,displacement of roof to floor)as experimental indexes.By constructing the F statistics with different inspection levels,evaluation method for influence of the experimental factors on stability indexes were defined.Thus,influence degrees of specified parameters on the stability of roadway were divided into five classes as follows:highly significant influence,significant influence,relatively significant influence,little significant influence,and no influence respectively which realize the quantitative analysis of the influence degrees of experimental factors.The finite element calculation results showed that main failure mode of coal roadway that usually showed as tension failure of coal seam in roof and deformation factors of coal seam had the most remarkable effect on roadway displacements.The conclusions provide theoretical basis for further analysis of the mechanism of"roof burst"in roadway maintenance.