In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back proj...In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.展开更多
We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM,a seamless workflow that sequentially performs phase picking,association,location,and matched filter for cont...We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM,a seamless workflow that sequentially performs phase picking,association,location,and matched filter for continuous data.The catalog contains 29,519 well-located events in the two mainshocks rupture region during 2023-02-01–2023-02-28,which significantly improves the detection completeness and relocation precision compared to the public routine catalog.Employing the new PALM catalog,we analyze the structure of the seismogenic fault system.We find that the Eastern Anatolian Fault(EAF)that generated the first M_(W)7.9 mainshock is overall near-vertical,whereas complexities are revealed in a small-scale,such as subparallel subfaults,unmapped branches,and stepovers.The seismicity on EAF is shallow(<15 km)and concentrated in depth distribution,indicating a clear lock-creep transition.In contrast,the SürgüFault(SF)that is responsible for the second M_(W)7.8 mainshock is shovel-shaped for the nucleation segment and has overall low dip angles(~40°–80°).Aftershocks on the SF distribute in a broad range of depth,extending down to~35 km.We also analyze the temporal behavior of seismicity,discovering no immediate foreshocks within~5 days preceding the first mainshock,and no seismic activity on the SF before the second mainshock.展开更多
We presented a boundary element method using the approximate analytical Green's function given by Sanchez-Sesma et al. Coordinate transform is introduced to extend the method to deal with the model with constant-grad...We presented a boundary element method using the approximate analytical Green's function given by Sanchez-Sesma et al. Coordinate transform is introduced to extend the method to deal with the model with constant-gradient velocity along oblique direction. The method is validated by comparing the numerical results with other independent methods. This method provides a useful tool for analyzing local site effects. We computed seismic response for two series of models. The results in both frequency and time domains are analyzed and show complex amplification patterns. The fundamental mode of resonance is dependent not only on the velocity at the free surface but also on the velocity distribution of the whole basin. For the higher modes of vibration the heterogeneous basin also has its own characteristic.展开更多
High-frequency rupture process of the Oct 23, 2011 Van-Merkez earthquake is imaged by back-projection method using high-quality teleseismic P wave data from the US Array, and prestack Kirchhoff migration using P wave ...High-frequency rupture process of the Oct 23, 2011 Van-Merkez earthquake is imaged by back-projection method using high-quality teleseismic P wave data from the US Array, and prestack Kirchhoff migration using P wave data from a subarray of global seismic networks. The rupture model with two asperities is confirmed by previous two methods. In low-frequency imaging, a large asperity derived from the migration method corresponds to the second one from the high-frequency P waves. The con- sistency of the locations of asperities from datasets with different frequency bands indicates that there is possible insignificance of the frequency-dependent feature for the earthquake. The resultant images illustrate the spatial and temporal evolution of the rupture, which mainly propa- gated WSW over a length of 33 km during the first 18 s, accompanying with bursts of two asperities at 3 and 11-13 s. The rupture direction is confirmed by the S wave comer frequency variations of strong ground accelerations. The rupture fronts are mainly located at the updip of the causative fault. Based on polarities of the P waveforms and focal mechanisms of the mainshock and aftershocks, the failure of these two asperities is determined to have occurred on a reverse fault with a dip angle of 47°. Hence, the rupture pattern of the 2011 Van-Merkez earthquakewas dominated by a unilateral rupture toward the west- southwest direction.展开更多
In this paper, we developed the theory and algorithm of an elastic one-way boundary element method(BEM) and a corresponding hybrid elastic thin-slab propagator for earth media with sharp boundaries between strong co...In this paper, we developed the theory and algorithm of an elastic one-way boundary element method(BEM) and a corresponding hybrid elastic thin-slab propagator for earth media with sharp boundaries between strong contrast media. This approach can takes the advantage of accurate boundary condition of BEM and completely overcomes the weak contrast limitation of the perturbationtheory based one-way operator approach. The one-way BEM is a smooth boundary approximation, which avoids huge matrix operations in exact full BEM. In addition, the one-way BEM can model the primary-only transmitted and reflected waves and therefore is a valuable tool in elastic imaging and inversion. Through numerical tests for some simple models,we proved the validity and efficiency of the proposed method.展开更多
Seismic data coverage in ocean regions is sparse,and it is highly challenging to build long-term continuous seismic networks in the oceans due to the restrictions related to the shortage of instruments and great costs...Seismic data coverage in ocean regions is sparse,and it is highly challenging to build long-term continuous seismic networks in the oceans due to the restrictions related to the shortage of instruments and great costs.The lack of data coverage limits effective seismic imaging of deep mantle structures beneath the oceans,which cover 70%of the Earth’s surface.The newly developed Mobile Earthquake Recorder in Marine Areas by Independent Drivers(MERMAID)can drift with ocean currents at a specified depth while recording seismic signals.The Southern University of Science and Technology(SUSTech)launched 10 MERMAIDs in the South China Sea(SCS)in May 2021 that formed the South China Sea Floating Seismic Network(SCS-FSN).We analyzed the one-year-long records of the SCS-FSN,identifying 372 cataloged earthquakes and acquiring 1,015 high-quality travel time data.By analyzing the records of earthquakes with magnitudes above 7.0 and conducting synthetic waveform calculation,we found that,in addition to the epicentral distance and earthquake magnitude,the earthquake identification ability of the network is also affected by the focal mechanism,sea condition,seafloor relief,and MERMAID working state.Although the recognition rate of the SCS-FSN is only 16%for earthquakes with magnitudes above 5.5 and epicentral distances less than 90°,this network is expected to collect more than 5,000 high-quality travel time data during its five-year battery life.These new data will significantly improve the seismic data coverage,compensating for the lack of long-term continuous seismic network observations in the SCS.Most importantly,with this experiment,we are confident that setting up well-designed floating seismic networks in the world’s three oceans could solve the world-class problem of the lack of effective seismic data coverage beneath ocean regions.展开更多
Resolving rupture processes of great earthquakes has fundamental importance to the study of earthquake physics,rupture dynamics, fault zone structure, and evolving processes. It also plays an essential role in earthqu...Resolving rupture processes of great earthquakes has fundamental importance to the study of earthquake physics,rupture dynamics, fault zone structure, and evolving processes. It also plays an essential role in earthquake hazard estimation,emergency response and seismic hazard mitigation. This paper reviews the major progress of the earthquake rupture process studies in the last decades, with an emphasize on the research directions of the department geophysics of Peking University including real-time response, back-projection techniques, geodetic data analysis, joint inversion and inversion in complex earth medium. We discussed the advantages and limitations of tradition methods;proposed a systematic and integrated approach from fast-response to detailed study. We also raised perspectives of using source models for ground motion prediction and the possibility of full-dynamic inversion.展开更多
基金supported by the National Key R&D Program of China(No.2022YFF0800601)National Scientific Foundation of China(Nos.41930103 and 41774047).
文摘In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.
基金jointly supported by the National Key R&D Program (No.2022YFF0800601)the Istanbul Technical University Research Fund (ITU-BAP)+1 种基金the Alexander von Humboldt Foundation Research Fellowship Award for providing computing facilities through the Humboldt-Stiftung Follow-Up Programthe University of California,Riverside。
文摘We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM,a seamless workflow that sequentially performs phase picking,association,location,and matched filter for continuous data.The catalog contains 29,519 well-located events in the two mainshocks rupture region during 2023-02-01–2023-02-28,which significantly improves the detection completeness and relocation precision compared to the public routine catalog.Employing the new PALM catalog,we analyze the structure of the seismogenic fault system.We find that the Eastern Anatolian Fault(EAF)that generated the first M_(W)7.9 mainshock is overall near-vertical,whereas complexities are revealed in a small-scale,such as subparallel subfaults,unmapped branches,and stepovers.The seismicity on EAF is shallow(<15 km)and concentrated in depth distribution,indicating a clear lock-creep transition.In contrast,the SürgüFault(SF)that is responsible for the second M_(W)7.8 mainshock is shovel-shaped for the nucleation segment and has overall low dip angles(~40°–80°).Aftershocks on the SF distribute in a broad range of depth,extending down to~35 km.We also analyze the temporal behavior of seismicity,discovering no immediate foreshocks within~5 days preceding the first mainshock,and no seismic activity on the SF before the second mainshock.
基金supported by the National Science Foundation of China(Nos. D40444002 and D40521002)National Key Basic Research Program(No.2006CB705803)
文摘We presented a boundary element method using the approximate analytical Green's function given by Sanchez-Sesma et al. Coordinate transform is introduced to extend the method to deal with the model with constant-gradient velocity along oblique direction. The method is validated by comparing the numerical results with other independent methods. This method provides a useful tool for analyzing local site effects. We computed seismic response for two series of models. The results in both frequency and time domains are analyzed and show complex amplification patterns. The fundamental mode of resonance is dependent not only on the velocity at the free surface but also on the velocity distribution of the whole basin. For the higher modes of vibration the heterogeneous basin also has its own characteristic.
基金supported by the National Science Natural Foundation of China (Grant Nos.41074029,40821160552 and 40821062)
文摘High-frequency rupture process of the Oct 23, 2011 Van-Merkez earthquake is imaged by back-projection method using high-quality teleseismic P wave data from the US Array, and prestack Kirchhoff migration using P wave data from a subarray of global seismic networks. The rupture model with two asperities is confirmed by previous two methods. In low-frequency imaging, a large asperity derived from the migration method corresponds to the second one from the high-frequency P waves. The con- sistency of the locations of asperities from datasets with different frequency bands indicates that there is possible insignificance of the frequency-dependent feature for the earthquake. The resultant images illustrate the spatial and temporal evolution of the rupture, which mainly propa- gated WSW over a length of 33 km during the first 18 s, accompanying with bursts of two asperities at 3 and 11-13 s. The rupture direction is confirmed by the S wave comer frequency variations of strong ground accelerations. The rupture fronts are mainly located at the updip of the causative fault. Based on polarities of the P waveforms and focal mechanisms of the mainshock and aftershocks, the failure of these two asperities is determined to have occurred on a reverse fault with a dip angle of 47°. Hence, the rupture pattern of the 2011 Van-Merkez earthquakewas dominated by a unilateral rupture toward the west- southwest direction.
基金supported by National Scientific Foundation of China with Grant No. 41774067
文摘In this paper, we developed the theory and algorithm of an elastic one-way boundary element method(BEM) and a corresponding hybrid elastic thin-slab propagator for earth media with sharp boundaries between strong contrast media. This approach can takes the advantage of accurate boundary condition of BEM and completely overcomes the weak contrast limitation of the perturbationtheory based one-way operator approach. The one-way BEM is a smooth boundary approximation, which avoids huge matrix operations in exact full BEM. In addition, the one-way BEM can model the primary-only transmitted and reflected waves and therefore is a valuable tool in elastic imaging and inversion. Through numerical tests for some simple models,we proved the validity and efficiency of the proposed method.
基金supported by the NSFC Open Research Cruise (Cruise No. NORC2021-08)funded by Shiptime Sharing Project of the NSFC+1 种基金supported by the National Natural Science Foundation of China (Grant No. 41890814)the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)
文摘Seismic data coverage in ocean regions is sparse,and it is highly challenging to build long-term continuous seismic networks in the oceans due to the restrictions related to the shortage of instruments and great costs.The lack of data coverage limits effective seismic imaging of deep mantle structures beneath the oceans,which cover 70%of the Earth’s surface.The newly developed Mobile Earthquake Recorder in Marine Areas by Independent Drivers(MERMAID)can drift with ocean currents at a specified depth while recording seismic signals.The Southern University of Science and Technology(SUSTech)launched 10 MERMAIDs in the South China Sea(SCS)in May 2021 that formed the South China Sea Floating Seismic Network(SCS-FSN).We analyzed the one-year-long records of the SCS-FSN,identifying 372 cataloged earthquakes and acquiring 1,015 high-quality travel time data.By analyzing the records of earthquakes with magnitudes above 7.0 and conducting synthetic waveform calculation,we found that,in addition to the epicentral distance and earthquake magnitude,the earthquake identification ability of the network is also affected by the focal mechanism,sea condition,seafloor relief,and MERMAID working state.Although the recognition rate of the SCS-FSN is only 16%for earthquakes with magnitudes above 5.5 and epicentral distances less than 90°,this network is expected to collect more than 5,000 high-quality travel time data during its five-year battery life.These new data will significantly improve the seismic data coverage,compensating for the lack of long-term continuous seismic network observations in the SCS.Most importantly,with this experiment,we are confident that setting up well-designed floating seismic networks in the world’s three oceans could solve the world-class problem of the lack of effective seismic data coverage beneath ocean regions.
基金supported by the National Key R&D Program of China(Grant No.2018YFC1504203)。
文摘Resolving rupture processes of great earthquakes has fundamental importance to the study of earthquake physics,rupture dynamics, fault zone structure, and evolving processes. It also plays an essential role in earthquake hazard estimation,emergency response and seismic hazard mitigation. This paper reviews the major progress of the earthquake rupture process studies in the last decades, with an emphasize on the research directions of the department geophysics of Peking University including real-time response, back-projection techniques, geodetic data analysis, joint inversion and inversion in complex earth medium. We discussed the advantages and limitations of tradition methods;proposed a systematic and integrated approach from fast-response to detailed study. We also raised perspectives of using source models for ground motion prediction and the possibility of full-dynamic inversion.