期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The emerging technology of biohybrid micro-robots:a review 被引量:2
1
作者 zening lin Tao Jiang Jianzhong Shang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2022年第1期107-132,共26页
In the past few decades,robotics research has witnessed an increasingly high interest in miniaturized,intelligent,and integrated robots.The imperative component of a robot is the actuator that determines its performan... In the past few decades,robotics research has witnessed an increasingly high interest in miniaturized,intelligent,and integrated robots.The imperative component of a robot is the actuator that determines its performance.Although traditional rigid drives such as motors and gas engines have shown great prevalence in most macroscale circumstances,the reduction of these drives to the millimeter or even lower scale results in a significant increase in manufacturing difficulty accompanied by a remarkable performance decline.Biohybrid robots driven by living cells can be a potential solution to overcome these drawbacks by benefiting from the intrinsic microscale self-assembly of living tissues and high energy efficiency,which,among other unprecedented properties,also feature flexibility,self-repair,and even multiple degrees of freedom.This paper systematically reviews the development of biohybrid robots.First,the development of biological flexible drivers is introduced while emphasizing on their advantages over traditional drivers.Second,up-to-date works regarding biohybrid robots are reviewed in detail from three aspects:biological driving sources,actuator materials,and structures with associated control methodologies.Finally,the potential future applications and major challenges of biohybrid robots are explored. 展开更多
关键词 Biohybrid robots Living cells Actuator materials Structure Control methodologies
下载PDF
Development of conductive hydrogels: from design mechanisms to frontier applications
2
作者 Yang Hong zening lin +3 位作者 Zirong Luo Tao Jiang Jianzhong Shang Yun Yang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2022年第4期729-756,共28页
Owing to their excellent mechanical flexibility, electrical conductivity, and biocompatibility, conductive hydrogels(CHs) are widely used in the fields of energy and power, and biomedical technology. To arrive at a be... Owing to their excellent mechanical flexibility, electrical conductivity, and biocompatibility, conductive hydrogels(CHs) are widely used in the fields of energy and power, and biomedical technology. To arrive at a better understanding of the design methods and development trends of CHs, this paper summarizes and analyzes related research published in recent years. First,we describe the properties and characteristics of CHs. Using Scopus, the world’s largest abstract and citation database, we conducted a quantitative analysis of the related literature from the past 15 years and summarized development trends in the field of CHs. Second, we describe the types of CH network crosslinking and basic functional design methods and summarize the three-dimensional(3D) structure-forming methods and conductive performance tests of CHs. In addition, we introduce applications of CHs in the fields of energy and power, biomedical technology, and others. Lastly, we discuss several problems in current CH research and introduce some prospects for the future development of CHs. 展开更多
关键词 Conductive hydrogels Crosslinking mechanism Design methods 3D structure-forming methods Conductive hydrogel applications
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部