Rice production accounts for approximately half of the freshwater resources utilized in agriculture,result-ing in greenhouse gas emissions such as methane(CH4)from flooded paddy fields.To address this chal-lenge,envir...Rice production accounts for approximately half of the freshwater resources utilized in agriculture,result-ing in greenhouse gas emissions such as methane(CH4)from flooded paddy fields.To address this chal-lenge,environmentally friendly and cost-effective water-saving techniques have become widely adopted in rice cultivation.However,the implementation of water-saving treatments(WsTs)in paddy-field rice has been associated with a substantial yield loss of up to 50%as well as a reduction in nitrogen use efficiency(NUE).In this study,we discovered that the target of rapamycin(TOR)signaling pathway is compromised in rice under WsT.Polysome profiling-coupled transcriptome sequencing(polysome-seq)analysis unveiled a substantial reduction in global translation in response to WST associated with the downregulation of TOR activity.Molecular,biochemical,and genetic analyses revealed new insights into the impact of the positive TOR-S6K-RPS6 and negative TOR-MAF1 modules on translation repression under WST.Intriguingly,ammonium exhibited a greater ability to alleviate growth constraints under WsT by enhancing TOR signaling,which simultaneously promoted uptake and utilization of ammonium and nitrogen allocation.We further demonstrated that TOR modulates the ammonium transporter AMT1;1 as well as the amino acid permease APP1 and dipeptide transporter NPF7.3 at the translational level through the 5'untranslated region.Collectively,these findings reveal that enhancing TOR signaling could mitigate rice yield penalty due to WST by regulating the processes involved in protein synthesis and NUE.Our study will contribute to the breeding of new rice varieties with increased water and fertilizer utilization efficiency.展开更多
Rare earth co-doped phosphor for fluorescence intensity ratio(FIR) thermometer has gained increasing attention in recent years. Herein, the novel Tb^(3+)and Eu^(3+)co-doped K_(3)SrBi(P_(2)O_(7))_(2)(KSBP) phosphate ph...Rare earth co-doped phosphor for fluorescence intensity ratio(FIR) thermometer has gained increasing attention in recent years. Herein, the novel Tb^(3+)and Eu^(3+)co-doped K_(3)SrBi(P_(2)O_(7))_(2)(KSBP) phosphate phosphors were reported. The crystal structure of the title phosphor was determined using Rietveld refinement and proved to have a three-dimensional structure. The time-resolved spectroscopy reveals that there is almost no energy transfer between Tb^(3+)and Eu^(3+). More importantly, Tb^(3+)and Eu^(3+)emissions show different thermal quenching behaviors, which claims the potential of this material for application in optical thermometer. The FIR of the typical KSBP:0.02Tb^(3+),0.04Eu^(3+)sample demonstrates a polynomial relationship as a function of temperature and the absolute and relative sensitivity are0.025 K^(-1) and 0.59%/K, respectively. In general, our study reports a novel and potential KSBP:Tb^(3+),Eu^(3+)phosphate phosphor that is promising for use in high-sensitive FIR thermometers.展开更多
The ambient air quality standard(AAQS)is a vital policy instrument for protecting the environment and human health.Hainan Province is at the forefront of China's efforts to protect its ecological environment,with ...The ambient air quality standard(AAQS)is a vital policy instrument for protecting the environment and human health.Hainan Province is at the forefront of China's efforts to protect its ecological environment,with an official goal to achieve world-leading air quality by 2035.However,neither the national AAQS nor the World Health Organization guideline offers sufficient guidance for improving air quality in Hainan because Hainan has well met the former while the latter is excessively stringent.Consequently,the establishment of Hainan's local AAQS becomes imperative.Nonetheless,research regarding the development of local AAQS is scarce,especially in comparatively more polluted countries such as China.The relatively high background values and significant interannual fluctuations in air pollutant concentrations in Hainan present challenges in the development of local AAQS.Our research proposes a world-class local AAQS of Hainan Province by reviewing the AAQS in major countries or regions worldwide,analyzing the influence of different statistical forms,and carefully evaluating the attainability of the standard.In the proposed AAQS,the annual mean concentration limit for PM2.5,the annual 95th percentile of daily maximum 8-h mean(MDA8)concentration limit for O_(3),and the peak season concentration limit for O_(3) are set at 10,120,and 85μg/m^(3),respectively.Our study indicates that,with effective control policies,Hainan is projected to achieve compliance with the new standard by 2035.The implementation of the local AAQS is estimated to avoid 1,526(1,253–1,789)and 259(132–501)premature deaths attributable to longterm exposure to PM2.5 and O_(3) in Hainan in 2035,respectively.展开更多
Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),the pathogen responsible for coronavirus disease 2019(COVID-19),continues to evolve,giving rise to more variants and global reinfections.Previous research ha...Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),the pathogen responsible for coronavirus disease 2019(COVID-19),continues to evolve,giving rise to more variants and global reinfections.Previous research has demonstrated that barcode segments can effectively and cost-efficiently identify specific species within closely related populations.In this study,we designed and tested RNA barcode segments based on genetic evolutionary relationships to facilitate the efficient and accurate identification of SARS-CoV-2 from extensive virus samples,including human coronaviruses(HCoVs)and SARSr-CoV-2 lineages.Nucleotide sequences sourced from NCBI and GISAID were meticulously selected and curated to construct training sets,encompassing 1733 complete genome sequences of HCoVs and SARSr-CoV-2 lineages.Through genetic-level species testing,we validated the accuracy and reliability of the barcode segments for identifying SARS-CoV-2.Subsequently,75 main and subordinate species-specific barcode segments for SARS-CoV-2,located in ORF1ab,S,E,ORF7a,and N coding sequences,were intercepted and screened based on single-nucleotide polymorphism sites and weighted scores.Post-testing,these segments exhibited high recall rates(nearly 100%),specificity(almost 30%at the nucleotide level),and precision(100%)performance on identification.They were eventually visualized using one and two-dimensional combined barcodes and deposited in an online database(http://virusbarcodedatabase.top/).The successful integration of barcoding technology in SARS-CoV-2 identification provides valuable insights for future studies involving complete genome sequence polymorphism analysis.Moreover,this cost-effective and efficient identification approach also provides valuable reference for future research endeavors related to virus surveillance.展开更多
基金Thise research was supported by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City City(320LH031 and HSPHDSRF-2023-04-016)Zhejiang Provincial Natural Science Foundation of China(LY21C020003)+3 种基金Zhejiang University Global Partnership Fund,Fundamental Research Funds for the Central Universities for the Central Universities(K20200168)the Key Research and Development Program of Zhejiang(2020C02002)National Natural Science Foundation of China(32201819)China Postdoctoral Science Foundation(2022M712807).
文摘Rice production accounts for approximately half of the freshwater resources utilized in agriculture,result-ing in greenhouse gas emissions such as methane(CH4)from flooded paddy fields.To address this chal-lenge,environmentally friendly and cost-effective water-saving techniques have become widely adopted in rice cultivation.However,the implementation of water-saving treatments(WsTs)in paddy-field rice has been associated with a substantial yield loss of up to 50%as well as a reduction in nitrogen use efficiency(NUE).In this study,we discovered that the target of rapamycin(TOR)signaling pathway is compromised in rice under WsT.Polysome profiling-coupled transcriptome sequencing(polysome-seq)analysis unveiled a substantial reduction in global translation in response to WST associated with the downregulation of TOR activity.Molecular,biochemical,and genetic analyses revealed new insights into the impact of the positive TOR-S6K-RPS6 and negative TOR-MAF1 modules on translation repression under WST.Intriguingly,ammonium exhibited a greater ability to alleviate growth constraints under WsT by enhancing TOR signaling,which simultaneously promoted uptake and utilization of ammonium and nitrogen allocation.We further demonstrated that TOR modulates the ammonium transporter AMT1;1 as well as the amino acid permease APP1 and dipeptide transporter NPF7.3 at the translational level through the 5'untranslated region.Collectively,these findings reveal that enhancing TOR signaling could mitigate rice yield penalty due to WST by regulating the processes involved in protein synthesis and NUE.Our study will contribute to the breeding of new rice varieties with increased water and fertilizer utilization efficiency.
基金Project supported by the National Natural Science Foundation of China(52072348 and 52104272)Scientific Research Start-up Fund of Anhui Polytechnic University(2020YQQ053)+1 种基金Scientific Research Project of Anhui Polytechnic University(Xjky2020083)Innovation and Entrepreneurship Education and Training Project for Anhui Provincial College Students(S202110363258)。
文摘Rare earth co-doped phosphor for fluorescence intensity ratio(FIR) thermometer has gained increasing attention in recent years. Herein, the novel Tb^(3+)and Eu^(3+)co-doped K_(3)SrBi(P_(2)O_(7))_(2)(KSBP) phosphate phosphors were reported. The crystal structure of the title phosphor was determined using Rietveld refinement and proved to have a three-dimensional structure. The time-resolved spectroscopy reveals that there is almost no energy transfer between Tb^(3+)and Eu^(3+). More importantly, Tb^(3+)and Eu^(3+)emissions show different thermal quenching behaviors, which claims the potential of this material for application in optical thermometer. The FIR of the typical KSBP:0.02Tb^(3+),0.04Eu^(3+)sample demonstrates a polynomial relationship as a function of temperature and the absolute and relative sensitivity are0.025 K^(-1) and 0.59%/K, respectively. In general, our study reports a novel and potential KSBP:Tb^(3+),Eu^(3+)phosphate phosphor that is promising for use in high-sensitive FIR thermometers.
基金supported by the National Key R&D Program of China(2022YFC3700702)the Energy Foundation,and the Tsinghua-Toyota Joint Research Institute Inter-disciplinary Program.
文摘The ambient air quality standard(AAQS)is a vital policy instrument for protecting the environment and human health.Hainan Province is at the forefront of China's efforts to protect its ecological environment,with an official goal to achieve world-leading air quality by 2035.However,neither the national AAQS nor the World Health Organization guideline offers sufficient guidance for improving air quality in Hainan because Hainan has well met the former while the latter is excessively stringent.Consequently,the establishment of Hainan's local AAQS becomes imperative.Nonetheless,research regarding the development of local AAQS is scarce,especially in comparatively more polluted countries such as China.The relatively high background values and significant interannual fluctuations in air pollutant concentrations in Hainan present challenges in the development of local AAQS.Our research proposes a world-class local AAQS of Hainan Province by reviewing the AAQS in major countries or regions worldwide,analyzing the influence of different statistical forms,and carefully evaluating the attainability of the standard.In the proposed AAQS,the annual mean concentration limit for PM2.5,the annual 95th percentile of daily maximum 8-h mean(MDA8)concentration limit for O_(3),and the peak season concentration limit for O_(3) are set at 10,120,and 85μg/m^(3),respectively.Our study indicates that,with effective control policies,Hainan is projected to achieve compliance with the new standard by 2035.The implementation of the local AAQS is estimated to avoid 1,526(1,253–1,789)and 259(132–501)premature deaths attributable to longterm exposure to PM2.5 and O_(3) in Hainan in 2035,respectively.
基金supported by grants from Key Research&Development Project of Nanhua Biomedical Co.,Ltd.(No.H202191490139)National Natural Science Foundation of China(No.31872866)+1 种基金China Postdoctoral Science Foundation(Nos.2021M701160 and 2022M721101)Funds of Hunan university(521119400156).
文摘Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),the pathogen responsible for coronavirus disease 2019(COVID-19),continues to evolve,giving rise to more variants and global reinfections.Previous research has demonstrated that barcode segments can effectively and cost-efficiently identify specific species within closely related populations.In this study,we designed and tested RNA barcode segments based on genetic evolutionary relationships to facilitate the efficient and accurate identification of SARS-CoV-2 from extensive virus samples,including human coronaviruses(HCoVs)and SARSr-CoV-2 lineages.Nucleotide sequences sourced from NCBI and GISAID were meticulously selected and curated to construct training sets,encompassing 1733 complete genome sequences of HCoVs and SARSr-CoV-2 lineages.Through genetic-level species testing,we validated the accuracy and reliability of the barcode segments for identifying SARS-CoV-2.Subsequently,75 main and subordinate species-specific barcode segments for SARS-CoV-2,located in ORF1ab,S,E,ORF7a,and N coding sequences,were intercepted and screened based on single-nucleotide polymorphism sites and weighted scores.Post-testing,these segments exhibited high recall rates(nearly 100%),specificity(almost 30%at the nucleotide level),and precision(100%)performance on identification.They were eventually visualized using one and two-dimensional combined barcodes and deposited in an online database(http://virusbarcodedatabase.top/).The successful integration of barcoding technology in SARS-CoV-2 identification provides valuable insights for future studies involving complete genome sequence polymorphism analysis.Moreover,this cost-effective and efficient identification approach also provides valuable reference for future research endeavors related to virus surveillance.