期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Steering surface reconstruction of hybrid metal oxides for efficient oxygen evolution reaction in water splitting and zinc-air batteries
1
作者 Jie Zhu Junxue Chen +7 位作者 Xida Li Kun Luo zewei xiong Zhiyu Zhou Wenyun Zhu Zhihong Luo Jingbin Huang Yibing Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期383-393,共11页
Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER)conditions;however,rationally regulating reconstruction in a targeted manner for constructing highly active OER electr... Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER)conditions;however,rationally regulating reconstruction in a targeted manner for constructing highly active OER electrocatalysts remains a formidable challenge.Here,an electrochemical activation strategy with selective etching was utilized to guide the reconstruction process of a hybrid cobalt-molybdenum oxide(CoMoO_(4)/Co_(3)O_(4)@CC)in a favorable direction to improve the OER performance.Both in-situ Raman and multiple ex-situ characterization tools demonstrate that controlled surface reconstruction can be easily achieved through Mo etching,with the formation of a dynamically stable amorphous-crystalline heterostructure.Theoretical calculations together with experimental results reveal that the synergistic effects between amorphous CoOOH and crystalline Co_(3)O_(4) are crucial in enhancing the catalytic performance.Consequently,the reconstructed CoMoO_(4)/Co_(3)O_(4)@CC exhibits a low overpotential of 250 mV to achieve a current density of 10 mA cm^(-2) in 1 M KOH,and more importantly it can be practiced in electrolytic water splitting and rechargeable zinc-air batteries devices,achieving ultra-long stability for over 500 and 1200 h,respectively.This work provides a promising route for the construction of high-performance electrocatalysts. 展开更多
关键词 ELECTROCATALYST Oxygen evolution reaction Surface reconstruction Selective etching Amorphous-crystalline heterostructures
下载PDF
Nitrogen-doped graphite encapsulated Fe/Fe3C nanoparticles and carbon black for enhanced performance towards oxygen reduction
2
作者 Jie Zhu zewei xiong +6 位作者 Jiming Zheng Zhihong Luo Guangbin Zhu Chao Xiao Zhengbing Meng Yibing Li Kun Luo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第11期2543-2551,共9页
Non-noble metal(NNM)catalysts have recently attracted intensive interest for their high catalytic performance towards oxygen reduction reaction(ORR)at low cost.Herein,a novel NNM catalyst was synthesized by the simple... Non-noble metal(NNM)catalysts have recently attracted intensive interest for their high catalytic performance towards oxygen reduction reaction(ORR)at low cost.Herein,a novel NNM catalyst was synthesized by the simple pyrolysis of carbon black,urea and a Fe-containing precursor,which exhibits excellent ORR catalytic activity,superior durability and methanol tolerance versus the Pt/C catalyst in both alkaline and acidic solutions.Scanning electron microscopy(SEM),transmission electron microscopy(TEM)and X-ray diffraction(XRD)characterizations demonstrate that the product is a nitrogen-doped hybrid of graphite encapsulated Fe/Fe3C nanoparticles and carbon black.X-ray photoelectron spectrum(XPS)and electrochemical analyses indicate that the catalytic performance and chemical stability correlate closely with a nitrogen-rich layer on the Fe/Fe3C nanoparticle after pyrolysis with presence of urea,leading to the same four-electron pathway towards ORR as the Pt/C catalyst.The hybrid is prospective to be an efficient ORR electrocatalyst for direct methanol fuel cells with high catalytic performance at low cost. 展开更多
关键词 Nitrogen doping Hybrid Fe/Fe3C Carbon black Oxygen reduction reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部