As the existing coordinated control strategies between grid and unit have limitations in isolated power system, this paper introduces new coordinated control strategies which can improve the stability of isolated syst...As the existing coordinated control strategies between grid and unit have limitations in isolated power system, this paper introduces new coordinated control strategies which can improve the stability of isolated system operation. This paper analyzes the power grid side and unit side influence factors on the isolated power system. The dynamic models which are suitable for islanding operation are applied to simulate and analyze the stability and dynamic characteristics of the isolated power system under the conditions of different load disturbances and governor parameters. With considering the differences of frequency characteristics between the interconnected and isolated power system, the adjusting and optimization methods of under frequency load shedding are proposed to meet the frequency stability requirements simultaneously in the two cases. Not only proper control strategies of the power plant but the settings of their parameters are suggested to improve the operation stability of the isolated power system. To confirm the correctness and effectiveness of the method mentioned above, the isolated system operation test was conducted under the real power system condition, and the results show that the proposed coordinated control strategies can greatly improve stability of the isolated power system.展开更多
This paper puts forward a method to design the user-defined component based on the user-defined modeling environment CBuilder of RTDS simulator. And also develops the user-defined component model with algorithm descri...This paper puts forward a method to design the user-defined component based on the user-defined modeling environment CBuilder of RTDS simulator. And also develops the user-defined component model with algorithm described by C language, visual graphics appearance, and the component function. And it generates the dynamic link library which has the same execution efficiency as that of the included model of RTDS. This paper takes the IEEE type EXST1 static excitation system as an example to build the user-defined component. The closed-loop tests on the user-defined component and the included one of RTDS are performed to examine the accuracy of the proposed method. By comparison, the test results show that the external characteristics of the user-defined component and the included model of RTDS are basically the same in the initialization process, the step process of the terminal voltage reference value and the case of the large disturbance.展开更多
In this paper, the model of turbine governor?based on the physical principles is constituted to improve the accuracy of power system dynamic simulation, making the results of simulation consistent with the actual situ...In this paper, the model of turbine governor?based on the physical principles is constituted to improve the accuracy of power system dynamic simulation, making the results of simulation consistent with the actual situation. The unit and grid coupling model which reflects the interaction between thermal system of power plant and power system is built using EMTDC/PSCAD. The influence of nonlinear characteristics on the valve opening and the steam turbine mechanical power is also analyzed in this paper. The results of simulation show that the improper setting of parameters reflecting nonlinear characteristics of turbine governor can lead to the cyclical oscillations of the valve opening and the?steam turbine mechanical power, and even can lead to the power oscillation persistently. The research achievements in this paper have a certain reference value on exploring the causes of power oscillation from the prime mover.展开更多
This paper systematically analyzes the transfer characteristics of the Rogowski-coil Current Transformer and its effect on protective relaying through theoretical analysis, experiments and simulations. The frequency c...This paper systematically analyzes the transfer characteristics of the Rogowski-coil Current Transformer and its effect on protective relaying through theoretical analysis, experiments and simulations. The frequency characteristics and transient characteristics of Rogowski transducer and Rogowski-coil Current Transformer are deeply analyzed based on the physical structure of the transformer.?It is revealed that broad bandwidth of the transformer can improve the performance of protective relaying, and the bandwidth is determined mainly by the parameters of the Rogowski transducer and signal processing circuits. It is also discovered that the measurement errors of transient current mainly depend on the abilities for the current transformer to reproduce an accurate replica of the decaying dc components, which is mainly decided by the decay time constant of the aperiodic component of transient current and the parameters of the integral unit. Finally, some measures are proposed for the performance improvement of Rogowski-coil Current Transformer to meet the requirements of protective relaying system in terms of structural design and testing standards.展开更多
The IEEE1588 network time synchronization, matched with smart substation information network transmission, is becoming the next generation advanced data synchronization of the smart substation. It is known that the in...The IEEE1588 network time synchronization, matched with smart substation information network transmission, is becoming the next generation advanced data synchronization of the smart substation. It is known that the inherent asymmetry error of the network synchronization approach in the smart substation is highlighted, which is concerned particularly. This paper models the synchronization process of the IEEE1588 based on the communication simulation software of OPNET Modeler. Firstly, it builds the models of master-slave clock, IEEE1588 protocol and network synchroniza- tion model, and analyzes the composition and influencing factors of the asymmetry error. Secondly, it quantitatively analyzes the influence of the synchronous asymmetric error of the IEEE1588 affected by the network status differences and the clock synchronization signal transmission path differences. Then its correction method is analyzed, in order to improve the IEEE1588 synchronization reliability and gives the solutions to its application in smart substation.展开更多
As power to gas(P2 G) technology gradually matures, the coupling between electricity networks and natural gas networks should ideally evolve synergistically.With the intent of characterizing market behaviors of integr...As power to gas(P2 G) technology gradually matures, the coupling between electricity networks and natural gas networks should ideally evolve synergistically.With the intent of characterizing market behaviors of integrated electric power and natural gas networks(IPGNs)with P2 G facilities, this paper establishes a steady-state model of P2 G and constructs optimal dispatch models of an electricity network and a natural gas network separately. In addition, a concept of slack energy flow(SEF) is proposed as a tool for coordinated optimal dispatch between the two networks. To study how the market pricing mechanism affects coordinated optimal dispatch in an IPGN, a market equilibrium-solving model for an IPGN is constructed according to game theory, with a solution based on the Nikaido-Isoda function. Case studies are conducted on a joint model that combines the modified IEEE 118-node electricity network and the Belgian 20-node gas network.The results show that if the game between an electric power company and a natural gas company reaches market equilibrium, not only can both companies maximize their profits, but also the coordinated operation of the coupling units, i.e., gas turbines and P2 G facilities, will contribute more to renewable energy utilization and carbon emission reduction.展开更多
As the proportion of wind power generation increases in power systems,it is necessary to develop new ways for wind power accommodation and improve the existing power dispatch model.The power-to-gas technology,which of...As the proportion of wind power generation increases in power systems,it is necessary to develop new ways for wind power accommodation and improve the existing power dispatch model.The power-to-gas technology,which offers a new approach to accommodate surplus wind power,is an excellent way to solve the former.Hence,this paper proposes to involve power-to-gas technology in the integrated electricity and natural gas systems(IEGSs).To solve the latter,on one hand,a new indicator,the scale factor of wind power integration,is introduced into the wind power stochastic model to better describe the uncertainty of grid-connected wind power;on the other hand,for quantizing and minimizing the impact of the uncertainties of wind power and system loads on system security,security risk constraints are established for the IEGS by the conditional value-at-risk method.By considering these two aspects,an MILP formulation of a security-risk based stochastic dynamic economic dispatch model for an IEGS is established,and GUROBI obtained from GAMS is used for the solution.Case studies are conducted on an IEGS consisting of a modified IEEE 39-bus system and the Belgium 20-node natural gas system to examine the effectiveness of the proposed dispatch model.展开更多
This paper presents a novel commutation failure(CF) assessment method considering the influences of voltage magnitude drop, phase shift, and spatial-temporal discreteness of AC system faults. The commutating voltage-t...This paper presents a novel commutation failure(CF) assessment method considering the influences of voltage magnitude drop, phase shift, and spatial-temporal discreteness of AC system faults. The commutating voltage-time area is employed to analyze the spatial-temporal discreteness of AC system faults causing CF in high-voltage direct current systems, and the influences of fault position and fault time on CF are revealed. Based on this, a novel CF criterion is proposed, further considering the influence of voltage phase shift and the spatial-temporal discreteness. Then this research develops a new CF assessment method, which does not rely on electromagnetic transient simulations. A real case from the China Southern Power Grid is used to verify the practicability of the proposed method by comparing with simulation results obtained using PSCAD/EMTDC.展开更多
Static security assessment(SSA) is an important procedure to ensure the static security of the power system.Researches recently show that cyber-attacks might be a critical hazard to the secure and economic operations ...Static security assessment(SSA) is an important procedure to ensure the static security of the power system.Researches recently show that cyber-attacks might be a critical hazard to the secure and economic operations of the power system. In this paper, the influences of false data injection attack(FDIA) on the power system SSA are studied. FDIA is a major kind of cyber-attacks that can inject malicious data into meters, cause false state estimation results, and evade being detected by bad data detection. It is firstly shown that the SSA results could be manipulated by launching a successful FDIA, which can lead to incorrect or unnecessary corrective actions. Then,two kinds of targeted scenarios are proposed, i.e., fake secure signal attack and fake insecure signal attack. The former attack will deceive the system operator to believe that the system operates in a secure condition when it is actually not. The latter attack will deceive the system operator to make corrective actions, such as generator rescheduling, load shedding, etc. when it is unnecessary and costly. The implementation of the proposed analysis is validated with the IEEE-39 benchmark system.展开更多
This paper develops a multi-timescale coordinated operation method for microgrids based on modern deep rein-forcement learning.Considering the complementary characteristics of different storage devices,the proposed ap...This paper develops a multi-timescale coordinated operation method for microgrids based on modern deep rein-forcement learning.Considering the complementary characteristics of different storage devices,the proposed approach achieves multi-timescale coordination of battery and supercapacitor by introducing a hierarchical two-stage dispatch model.The first stage makes an initial decision irrespective of the uncertainties using the hourly predicted data to minimize the operational cost.For the second stage,it aims to generate corrective actions for the first-stage decisions to compensate for real-time renewable generation fluctuations.The first stage is formulated as a non-convex deterministic optimization problem,while the second stage is modeled as a Markov decision process solved by an entropy-regularized deep reinforcement learning method,i.e.,the Soft Actor-Critic.The Soft Actor-Critic method can efficiently address the exploration-exploitation dilemma and suppress variations.This improves the robustness of decisions.Simulation results demonstrate that different types of energy storage devices can be used at two stages to achieve the multi-timescale coordinated operation.This proves the effectiveness of the proposed method.展开更多
Reliable sampled value(SV)synchronization is used to ensure the reliability of protective relaying in a smart substation based on IEC 61850.In this paper,an SV synchronization method based on SV propagation delay meas...Reliable sampled value(SV)synchronization is used to ensure the reliability of protective relaying in a smart substation based on IEC 61850.In this paper,an SV synchronization method based on SV propagation delay measurement and compensation is proposed.The method does not depend on an external reference clock and has higher reliability than existing ones.The core issue in the proposed method is to measure the switching delay.The following steps are undertaken in this work:First,the composition of SV propagation delay in a smart substation is analyzed.Second,a new switch with the capability of switching delay measuring and recording is presented.Third,two laboratory tests are conducted to study the measurement accuracy of the switching delay.Finally,an SV synchronization method is presented and its application is tested on a busbar protection system to demonstrate that the proposed method can achieve SV synchronization effectively.Test results show that the measurement is sufficiently accurate for the SV propagation delay compensation.The proposed method also shows that the reliability of the protective relaying in a smart substation is significantly improved.展开更多
文摘As the existing coordinated control strategies between grid and unit have limitations in isolated power system, this paper introduces new coordinated control strategies which can improve the stability of isolated system operation. This paper analyzes the power grid side and unit side influence factors on the isolated power system. The dynamic models which are suitable for islanding operation are applied to simulate and analyze the stability and dynamic characteristics of the isolated power system under the conditions of different load disturbances and governor parameters. With considering the differences of frequency characteristics between the interconnected and isolated power system, the adjusting and optimization methods of under frequency load shedding are proposed to meet the frequency stability requirements simultaneously in the two cases. Not only proper control strategies of the power plant but the settings of their parameters are suggested to improve the operation stability of the isolated power system. To confirm the correctness and effectiveness of the method mentioned above, the isolated system operation test was conducted under the real power system condition, and the results show that the proposed coordinated control strategies can greatly improve stability of the isolated power system.
文摘This paper puts forward a method to design the user-defined component based on the user-defined modeling environment CBuilder of RTDS simulator. And also develops the user-defined component model with algorithm described by C language, visual graphics appearance, and the component function. And it generates the dynamic link library which has the same execution efficiency as that of the included model of RTDS. This paper takes the IEEE type EXST1 static excitation system as an example to build the user-defined component. The closed-loop tests on the user-defined component and the included one of RTDS are performed to examine the accuracy of the proposed method. By comparison, the test results show that the external characteristics of the user-defined component and the included model of RTDS are basically the same in the initialization process, the step process of the terminal voltage reference value and the case of the large disturbance.
文摘In this paper, the model of turbine governor?based on the physical principles is constituted to improve the accuracy of power system dynamic simulation, making the results of simulation consistent with the actual situation. The unit and grid coupling model which reflects the interaction between thermal system of power plant and power system is built using EMTDC/PSCAD. The influence of nonlinear characteristics on the valve opening and the steam turbine mechanical power is also analyzed in this paper. The results of simulation show that the improper setting of parameters reflecting nonlinear characteristics of turbine governor can lead to the cyclical oscillations of the valve opening and the?steam turbine mechanical power, and even can lead to the power oscillation persistently. The research achievements in this paper have a certain reference value on exploring the causes of power oscillation from the prime mover.
文摘This paper systematically analyzes the transfer characteristics of the Rogowski-coil Current Transformer and its effect on protective relaying through theoretical analysis, experiments and simulations. The frequency characteristics and transient characteristics of Rogowski transducer and Rogowski-coil Current Transformer are deeply analyzed based on the physical structure of the transformer.?It is revealed that broad bandwidth of the transformer can improve the performance of protective relaying, and the bandwidth is determined mainly by the parameters of the Rogowski transducer and signal processing circuits. It is also discovered that the measurement errors of transient current mainly depend on the abilities for the current transformer to reproduce an accurate replica of the decaying dc components, which is mainly decided by the decay time constant of the aperiodic component of transient current and the parameters of the integral unit. Finally, some measures are proposed for the performance improvement of Rogowski-coil Current Transformer to meet the requirements of protective relaying system in terms of structural design and testing standards.
文摘The IEEE1588 network time synchronization, matched with smart substation information network transmission, is becoming the next generation advanced data synchronization of the smart substation. It is known that the inherent asymmetry error of the network synchronization approach in the smart substation is highlighted, which is concerned particularly. This paper models the synchronization process of the IEEE1588 based on the communication simulation software of OPNET Modeler. Firstly, it builds the models of master-slave clock, IEEE1588 protocol and network synchroniza- tion model, and analyzes the composition and influencing factors of the asymmetry error. Secondly, it quantitatively analyzes the influence of the synchronous asymmetric error of the IEEE1588 affected by the network status differences and the clock synchronization signal transmission path differences. Then its correction method is analyzed, in order to improve the IEEE1588 synchronization reliability and gives the solutions to its application in smart substation.
基金supported by the National Natural Science Foundation of China(No.51377060)the Major Consulting Program of Chinese Academy of Engineering(No.2015-ZD-09-09)
文摘As power to gas(P2 G) technology gradually matures, the coupling between electricity networks and natural gas networks should ideally evolve synergistically.With the intent of characterizing market behaviors of integrated electric power and natural gas networks(IPGNs)with P2 G facilities, this paper establishes a steady-state model of P2 G and constructs optimal dispatch models of an electricity network and a natural gas network separately. In addition, a concept of slack energy flow(SEF) is proposed as a tool for coordinated optimal dispatch between the two networks. To study how the market pricing mechanism affects coordinated optimal dispatch in an IPGN, a market equilibrium-solving model for an IPGN is constructed according to game theory, with a solution based on the Nikaido-Isoda function. Case studies are conducted on a joint model that combines the modified IEEE 118-node electricity network and the Belgian 20-node gas network.The results show that if the game between an electric power company and a natural gas company reaches market equilibrium, not only can both companies maximize their profits, but also the coordinated operation of the coupling units, i.e., gas turbines and P2 G facilities, will contribute more to renewable energy utilization and carbon emission reduction.
基金This work was supported by National Natural Science Foundation of China(No.51777077)Natural Science Foundation of Guangdong Province(2017A030313304).
文摘As the proportion of wind power generation increases in power systems,it is necessary to develop new ways for wind power accommodation and improve the existing power dispatch model.The power-to-gas technology,which offers a new approach to accommodate surplus wind power,is an excellent way to solve the former.Hence,this paper proposes to involve power-to-gas technology in the integrated electricity and natural gas systems(IEGSs).To solve the latter,on one hand,a new indicator,the scale factor of wind power integration,is introduced into the wind power stochastic model to better describe the uncertainty of grid-connected wind power;on the other hand,for quantizing and minimizing the impact of the uncertainties of wind power and system loads on system security,security risk constraints are established for the IEGS by the conditional value-at-risk method.By considering these two aspects,an MILP formulation of a security-risk based stochastic dynamic economic dispatch model for an IEGS is established,and GUROBI obtained from GAMS is used for the solution.Case studies are conducted on an IEGS consisting of a modified IEEE 39-bus system and the Belgium 20-node natural gas system to examine the effectiveness of the proposed dispatch model.
基金supported by National Natural Science Foundation of China(No.51407079)
文摘This paper presents a novel commutation failure(CF) assessment method considering the influences of voltage magnitude drop, phase shift, and spatial-temporal discreteness of AC system faults. The commutating voltage-time area is employed to analyze the spatial-temporal discreteness of AC system faults causing CF in high-voltage direct current systems, and the influences of fault position and fault time on CF are revealed. Based on this, a novel CF criterion is proposed, further considering the influence of voltage phase shift and the spatial-temporal discreteness. Then this research develops a new CF assessment method, which does not rely on electromagnetic transient simulations. A real case from the China Southern Power Grid is used to verify the practicability of the proposed method by comparing with simulation results obtained using PSCAD/EMTDC.
基金supported by the Hong Kong Polytechnic University(1-YW1Q)
文摘Static security assessment(SSA) is an important procedure to ensure the static security of the power system.Researches recently show that cyber-attacks might be a critical hazard to the secure and economic operations of the power system. In this paper, the influences of false data injection attack(FDIA) on the power system SSA are studied. FDIA is a major kind of cyber-attacks that can inject malicious data into meters, cause false state estimation results, and evade being detected by bad data detection. It is firstly shown that the SSA results could be manipulated by launching a successful FDIA, which can lead to incorrect or unnecessary corrective actions. Then,two kinds of targeted scenarios are proposed, i.e., fake secure signal attack and fake insecure signal attack. The former attack will deceive the system operator to believe that the system operates in a secure condition when it is actually not. The latter attack will deceive the system operator to make corrective actions, such as generator rescheduling, load shedding, etc. when it is unnecessary and costly. The implementation of the proposed analysis is validated with the IEEE-39 benchmark system.
基金supported by Guangdong Provincial Key Laboratory of New Technology for Smart Grid Funded Project under Grant No.2020b1212070025.
文摘This paper develops a multi-timescale coordinated operation method for microgrids based on modern deep rein-forcement learning.Considering the complementary characteristics of different storage devices,the proposed approach achieves multi-timescale coordination of battery and supercapacitor by introducing a hierarchical two-stage dispatch model.The first stage makes an initial decision irrespective of the uncertainties using the hourly predicted data to minimize the operational cost.For the second stage,it aims to generate corrective actions for the first-stage decisions to compensate for real-time renewable generation fluctuations.The first stage is formulated as a non-convex deterministic optimization problem,while the second stage is modeled as a Markov decision process solved by an entropy-regularized deep reinforcement learning method,i.e.,the Soft Actor-Critic.The Soft Actor-Critic method can efficiently address the exploration-exploitation dilemma and suppress variations.This improves the robustness of decisions.Simulation results demonstrate that different types of energy storage devices can be used at two stages to achieve the multi-timescale coordinated operation.This proves the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China under Grants 51577073 and 51377026.
文摘Reliable sampled value(SV)synchronization is used to ensure the reliability of protective relaying in a smart substation based on IEC 61850.In this paper,an SV synchronization method based on SV propagation delay measurement and compensation is proposed.The method does not depend on an external reference clock and has higher reliability than existing ones.The core issue in the proposed method is to measure the switching delay.The following steps are undertaken in this work:First,the composition of SV propagation delay in a smart substation is analyzed.Second,a new switch with the capability of switching delay measuring and recording is presented.Third,two laboratory tests are conducted to study the measurement accuracy of the switching delay.Finally,an SV synchronization method is presented and its application is tested on a busbar protection system to demonstrate that the proposed method can achieve SV synchronization effectively.Test results show that the measurement is sufficiently accurate for the SV propagation delay compensation.The proposed method also shows that the reliability of the protective relaying in a smart substation is significantly improved.