The writer identification(WI)of handwritten Arabic text is now of great concern to intelligence agencies following the recent attacks perpetrated by known Middle East terrorist organizations.It is also a useful instru...The writer identification(WI)of handwritten Arabic text is now of great concern to intelligence agencies following the recent attacks perpetrated by known Middle East terrorist organizations.It is also a useful instrument for the digitalization and attribution of old text to other authors of historic studies,including old national and religious archives.In this study,we proposed a new affective segmentation model by modifying an artificial neural network model and making it suitable for the binarization stage based on blocks.This modified method is combined with a new effective rotation model to achieve an accurate segmentation through the analysis of the histogram of binary images.Also,propose a new framework for correct text rotation that will help us to establish a segmentation method that can facilitate the extraction of text from its background.Image projections and the radon transform are used and improved using machine learning based on a co-occurrence matrix to produce binary images.The training stage involves taking a number of images for model training.These images are selected randomly with different angles to generate four classes(0–90,90–180,180–270,and 270–360).The proposed segmentation approach achieves a high accuracy of 98.18%.The study ultimately provides two major contributions that are ranked from top to bottom according to the degree of importance.The proposed method can be further developed as a new application and used in the recognition of handwritten Arabic text from small documents regardless of logical combinations and sentence construction.展开更多
Energy is one of the most important items to determine the network lifetime due to low power energy nodes included in the network. Generally, data aggregation tree concept is used to find an energy efficient solution....Energy is one of the most important items to determine the network lifetime due to low power energy nodes included in the network. Generally, data aggregation tree concept is used to find an energy efficient solution. However, even the best aggregation tree does not share the load of data packets to the transmitting nodes fairly while it is consuming the lowest possible energy of the network. Therefore, after some rounds, this problem causes to consume the whole energy of some heavily loaded nodes and hence results in with the death of the network. In this paper, by using the Genetic Algorithm (GA), we investigate the energy efficient data collecting spanning trees to find a suitable route which balances the data load throughout the network and thus balances the residual energy in the network in addition to consuming totally low power of the network. Using an algorithm which is able to balance the residual energy among the nodes can help the network to withstand more and consequently extend its own lifetime. In this work, we calculate all possible routes represented by the aggregation trees through the genetic algorithm. GA finds the optimum tree which is able to balance the data load and the energy in the network. Simulation results show that this balancing operation practically increases the network lifetime.展开更多
文摘The writer identification(WI)of handwritten Arabic text is now of great concern to intelligence agencies following the recent attacks perpetrated by known Middle East terrorist organizations.It is also a useful instrument for the digitalization and attribution of old text to other authors of historic studies,including old national and religious archives.In this study,we proposed a new affective segmentation model by modifying an artificial neural network model and making it suitable for the binarization stage based on blocks.This modified method is combined with a new effective rotation model to achieve an accurate segmentation through the analysis of the histogram of binary images.Also,propose a new framework for correct text rotation that will help us to establish a segmentation method that can facilitate the extraction of text from its background.Image projections and the radon transform are used and improved using machine learning based on a co-occurrence matrix to produce binary images.The training stage involves taking a number of images for model training.These images are selected randomly with different angles to generate four classes(0–90,90–180,180–270,and 270–360).The proposed segmentation approach achieves a high accuracy of 98.18%.The study ultimately provides two major contributions that are ranked from top to bottom according to the degree of importance.The proposed method can be further developed as a new application and used in the recognition of handwritten Arabic text from small documents regardless of logical combinations and sentence construction.
文摘Energy is one of the most important items to determine the network lifetime due to low power energy nodes included in the network. Generally, data aggregation tree concept is used to find an energy efficient solution. However, even the best aggregation tree does not share the load of data packets to the transmitting nodes fairly while it is consuming the lowest possible energy of the network. Therefore, after some rounds, this problem causes to consume the whole energy of some heavily loaded nodes and hence results in with the death of the network. In this paper, by using the Genetic Algorithm (GA), we investigate the energy efficient data collecting spanning trees to find a suitable route which balances the data load throughout the network and thus balances the residual energy in the network in addition to consuming totally low power of the network. Using an algorithm which is able to balance the residual energy among the nodes can help the network to withstand more and consequently extend its own lifetime. In this work, we calculate all possible routes represented by the aggregation trees through the genetic algorithm. GA finds the optimum tree which is able to balance the data load and the energy in the network. Simulation results show that this balancing operation practically increases the network lifetime.