A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under var...A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under various excitations.The layer number,the installation angle of the X-shaped structure,the stiffness,and the active control parameters are systematically analyzed.In addition,a prototype of the X-VSVI is manufactured,and vibration tests are carried out.The results show that the proposed X-VSVI has a superior adaptability to that of a traditional X-shaped mechanism,and shows excellent vibration isolation performance in response to different amplitudes and forms of excitations.Moreover,the vibration isolation efficiency of the device can be improved by appropriate adjustment of parameters.展开更多
This study addresses the modified bionic vibration isolation technology by introducing the electromagnetic system to simulate biological damping characteristics.It has been proven effective in improving the vibration ...This study addresses the modified bionic vibration isolation technology by introducing the electromagnetic system to simulate biological damping characteristics.It has been proven effective in improving the vibration environment.By assuming the spacecraft-adapter system as a two-degree-of-freedom system,an excellent simplified model can be derived.The novel bionic vibration isolation device(ABVS-EMVI),which combines an active bionic variable-stiffness device(ABVSVI)with the electromagnetic system,is proposed for the purpose of isolating vibration and harvesting energy at the same time.The dynamic equations of the spacecraft-adapter system with ABVS-EMVI are obtained using the Taylor expansion within the framework of the Lagrange equation,and the harmonic balance method is introduced to acquire the amplitude and voltage response of the system.The results indicate that the electromagnetic system can enhance the vibration isolation performance and provide energy harvesting capabilities.After confirming the ability of ABVS-EMVI to deal with different forms and amplitudes of excitation,the performance of vibration isolation and energy harvesting is investigated in terms of various parameters,and several new conclusions have been drawn.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12022213,12002329,U23A2066,12272240,and 12002217)。
文摘A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under various excitations.The layer number,the installation angle of the X-shaped structure,the stiffness,and the active control parameters are systematically analyzed.In addition,a prototype of the X-VSVI is manufactured,and vibration tests are carried out.The results show that the proposed X-VSVI has a superior adaptability to that of a traditional X-shaped mechanism,and shows excellent vibration isolation performance in response to different amplitudes and forms of excitations.Moreover,the vibration isolation efficiency of the device can be improved by appropriate adjustment of parameters.
基金supported by the National Natural Science Foundation of China(Grant Nos.12022213,12002329,and 12272240).
文摘This study addresses the modified bionic vibration isolation technology by introducing the electromagnetic system to simulate biological damping characteristics.It has been proven effective in improving the vibration environment.By assuming the spacecraft-adapter system as a two-degree-of-freedom system,an excellent simplified model can be derived.The novel bionic vibration isolation device(ABVS-EMVI),which combines an active bionic variable-stiffness device(ABVSVI)with the electromagnetic system,is proposed for the purpose of isolating vibration and harvesting energy at the same time.The dynamic equations of the spacecraft-adapter system with ABVS-EMVI are obtained using the Taylor expansion within the framework of the Lagrange equation,and the harmonic balance method is introduced to acquire the amplitude and voltage response of the system.The results indicate that the electromagnetic system can enhance the vibration isolation performance and provide energy harvesting capabilities.After confirming the ability of ABVS-EMVI to deal with different forms and amplitudes of excitation,the performance of vibration isolation and energy harvesting is investigated in terms of various parameters,and several new conclusions have been drawn.