期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Mechanistic Insights into Electrocatalytic Nitrogen Reduction Reaction on the Pd-W Heteronuclear Diatom Supported on C_(2)N Monolayer:Role of H Pre-Adsorption
1
作者 zeyun zhang Xuefei Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期323-333,共11页
The electrocatalytic N_(2) reduction reaction(eNRR)is a potential alternative to the Haber-Bosch process for ammonia(NH3)production.Tremendous efforts have been made in eNRR catalyst research to promote the practical ... The electrocatalytic N_(2) reduction reaction(eNRR)is a potential alternative to the Haber-Bosch process for ammonia(NH3)production.Tremendous efforts have been made in eNRR catalyst research to promote the practical application of eNRR.In this work,by means of density functional theory calculations and the computational hydrogen electrode model,we evaluated the eNRR performance of 30 single metal atoms supported on a C_(2)N monolayer(M@C_(2)N),and we designed a new thermodynamically stable Pd-W hetero-metal diatomic catalyst supported on the C_(2)N monolayer(PdW@C_(2)N).We found that PdW@C_(2)N prefers to adsorb H over N_(2),and then,the pre-generated hydrogen-terminated PdW@C_(2)N selectively adsorbing N_(2) behaves as the actual functioning“catalyst”to catalyze the eNRR process,exhibiting excellent performance with a low overpotential(0.31 V),an ultralow NH3 desorption free energy(0.05 eV),and a high selectivity toward eNRR over hydrogen evolution reaction(HER).Moreover,PdW@C_(2)N shows a superior eNRR performance to its monomer(W@C_(2)N)and homonuclear diatom(W_(2)@C_(2)N)counterparts.The revealed mechanism indicates that the preferential H adsorption over N_(2) on the active site may not always hamper the eNRR process,especially for heteronuclear diatom catalysts.This work encourages deeper exploration on the competition of eNRR and HER on catalyst surfaces. 展开更多
关键词 density functional theory electrochemistry heteronuclear diatom catalyst nitrogen reduction reaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部