Coastal wetlands such as salt marshes and mangroves provide important protection against stormy waves.Accurate assessments of wetlands’capacity in wave attenuation are required to safely utilize their protection serv...Coastal wetlands such as salt marshes and mangroves provide important protection against stormy waves.Accurate assessments of wetlands’capacity in wave attenuation are required to safely utilize their protection services.Recent studies have shown that tidal currents have a significant impact on wetlands’wave attenuation capacity,but such impact has been rarely considered in numerical models,which may lead to overestimation of wave attenuation in wetlands.This study modified the SWAN(Simulating Waves Nearshore)model to account for the effect of accompanying currents on vegetation-induced wave dissipation.Furthermore,this model was extended to include automatically derived vegetation drag coefficients,spatially varying vegetation height,and Doppler Effect in combined current-wave flows.Model evaluation against an analytical model and flume data shows that the modified model can accurately simulate wave height change in combined current-wave flows.Subsequently,we applied the new model to a mangrove wetland on Hailing Island in China with a special focus on the effect of currents on wave dissipation.It is found that the currents can either increase or decrease wave attenuation depending on the ratio of current velocity to the amplitude of the horizontal wave orbital velocity,which is in good agreement with field observations.Lastly,we used Hailing Island site as an example to simulate wave attenuation by vegetation under hypothetical storm surge conditions.Model results indicate that when currents are 0.08–0.15 m/s and the incident wave height is 0.75–0.90 m,wetlands’wave attenuation capacity can be reduced by nearly 10%compared with pure wave conditions,which provides implications for critical design conditions for coastal safety.The obtained results and the developed model are valuable for the design and implementation of wetland-based coastal defense.The code of the developed model has been made open source,in the hope to assist further research and coastal management.展开更多
Nature-based coastal protection is increasingly recognised as a potentially sustainable and cost-effective solution to reduce coastal flood risk.It uses coastal ecosystems such as mangrove forests to create resilient ...Nature-based coastal protection is increasingly recognised as a potentially sustainable and cost-effective solution to reduce coastal flood risk.It uses coastal ecosystems such as mangrove forests to create resilient designs for coastal flood protection.However,to use mangroves effectively as a nature-based measure for flood risk reduction,we must understand the biophysical processes that govern risk reduction capacity through mangrove ecosystem size and structure.In this perspective,we evaluate the current state of knowledge on local physical drivers and ecological processes that determine mangrove functioning as part of a nature-based flood defence.We show that the forest properties that comprise coastal flood protection are well-known,but models cannot yet pinpoint how spatial heterogeneity of the forest structure affects the capacity for wave or surge attenuation.Overall,there is relatively good understanding of the ecological processes that drive forest structure and size,but there is a lack of knowledge on how daily bed-level dynamics link to long-term biogeomorphic forest dynamics,and on the role of combined stressors influencing forest retreat.Integrating simulation models of forest structure under changing physical(e.g.due to sea-level change)and ecological drivers with hydrodynamic attenuation models will allow for better projections of long-term natural coastal protection.展开更多
The strong-field coherent control of the nonresonant ionization of nitrous oxide using shaped pulses is investigated.We study the dependence of periodic coherent oscillation of the total ionization yield on the variat...The strong-field coherent control of the nonresonant ionization of nitrous oxide using shaped pulses is investigated.We study the dependence of periodic coherent oscillation of the total ionization yield on the variation of laser phase parameters. The physical mechanism of the strong-field coherent control is investigated experimentally and theoretically by the nonresonant spectral phase interferences in the frequency domain. We show that the intense shaped pulses with broadband and off-resonance can be used as a robust strong-field coherent control method.展开更多
ZnS nano-particles with average sizes of 10 nm and 5 nm were fabricated by sol-gel method, and their pressure-induced phase transformations were in-situ examined in a diamond anvil cell by energy dispersive X-ray diff...ZnS nano-particles with average sizes of 10 nm and 5 nm were fabricated by sol-gel method, and their pressure-induced phase transformations were in-situ examined in a diamond anvil cell by energy dispersive X-ray diffraction (EDXD) from ambient pressure to 35.0 GPa. From the obtained interplanar spacing data,the volume compression ratios were derived at different pressures, and then the bulk modulus and its pressure derivative were obtained by fitting to the Murnaghan equation. It is found that both ZnS nano-particles initially in the zinc-blende phase transformed to cubic NaCl structure in the presence of pressure and the transition was reversible when the pressure was released. Moreover, it is suggested that a smaller particle size will induce a larger transition pressure.展开更多
Using density functional theory with generalized gradient approximation and hybrid functional, we studied the properties of energy, charge population, and vibration of CH2 and CH3 adsorbed on Cun (n=1-6) clusters. T...Using density functional theory with generalized gradient approximation and hybrid functional, we studied the properties of energy, charge population, and vibration of CH2 and CH3 adsorbed on Cun (n=1-6) clusters. The results show that the DFT calculation with the hybrid functional matches the experimental results better in both cases. The calculation results indicate that the adsorption of CH2 is stronger than that of CH3. During adsorption, the charges transfer from Cu to CH2 or CH3. The obtained vibrational frequencies for different modes of CH2 and CH3 adsorbed on Cun agree well with the experimental results for the adsorption on Cu(111) surface.展开更多
Coherent control of fragmentation of CH_3I using shaped femtosecond pulse train is investigated.The dissociation processes can be modulated by changing the separation of the shaped pulse train, and the yield of I^+und...Coherent control of fragmentation of CH_3I using shaped femtosecond pulse train is investigated.The dissociation processes can be modulated by changing the separation of the shaped pulse train, and the yield of I^+under the irradiation of the optimal pulse is significantly increased compared with that using the transform-limited pulse.We discuss the control mechanism of dissociation processes with coherent interference in time domain.A three-pulse control model is proposed to explain the counterintuitive experimental results.展开更多
Arsenic materials have attracted great attention due to their unique properties.However,research concerning iron-arsenic(Fe-As) alloys is very scarce due to the volatility of As at low temperature and the high melting...Arsenic materials have attracted great attention due to their unique properties.However,research concerning iron-arsenic(Fe-As) alloys is very scarce due to the volatility of As at low temperature and the high melting point of Fe.Herein,a new Fe-As alloy was obtained by mechanical alloying(MA) followed by vacuum hot-pressed sintering(VHPS).Moreover,a systematic study was carried out on the microstructural evolution,phase composition,leaching toxicity of As,and physical and mechanical properties of Fe-As alloys with varying weight fractions of As(20%,25%,30%,35%,45%,55%,65%,and 75%).The results showed that pre-alloyed metallic powders(PAMPs) have a fine grain size and specific supersaturated solid solution after MA,which could effectively improve the mechanical properties of Fe-As alloys by VHPS.A high density(> 7.350 g·cm^(-3)),low toxicity,and excellent mechanical properties could be obtained for FeAs alloys sintered via VHPS by adding an appropriate amount of As,which is more valuable than commercial Fe-As products.The Fe-25% As alloy with low toxicity and a relatively high density(7.635 g·cm^(-3)) provides an ultra-high compressive strength(1989.19 MPa),while the Fe-65% As alloy owns the maximum Vickers hardness(HVo.5 899.41).After leaching by the toxicity characteristic leaching procedure(TCLP),these alloys could still maintain good mechanical performance,and the strengthening mechanisms of Fe-As alloys before and after leaching were clarified.Changes in the grain size,micro structure,and phase distribution induced significant differences in the compressive strength and hardness.展开更多
基金The National Natural Science Foundation of China under contract No.42176202the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.311021004+1 种基金the Guangdong Provincial Department of Science and Technology under contract No.2019ZT08G090the 111 Project under contract No.B21018.
文摘Coastal wetlands such as salt marshes and mangroves provide important protection against stormy waves.Accurate assessments of wetlands’capacity in wave attenuation are required to safely utilize their protection services.Recent studies have shown that tidal currents have a significant impact on wetlands’wave attenuation capacity,but such impact has been rarely considered in numerical models,which may lead to overestimation of wave attenuation in wetlands.This study modified the SWAN(Simulating Waves Nearshore)model to account for the effect of accompanying currents on vegetation-induced wave dissipation.Furthermore,this model was extended to include automatically derived vegetation drag coefficients,spatially varying vegetation height,and Doppler Effect in combined current-wave flows.Model evaluation against an analytical model and flume data shows that the modified model can accurately simulate wave height change in combined current-wave flows.Subsequently,we applied the new model to a mangrove wetland on Hailing Island in China with a special focus on the effect of currents on wave dissipation.It is found that the currents can either increase or decrease wave attenuation depending on the ratio of current velocity to the amplitude of the horizontal wave orbital velocity,which is in good agreement with field observations.Lastly,we used Hailing Island site as an example to simulate wave attenuation by vegetation under hypothetical storm surge conditions.Model results indicate that when currents are 0.08–0.15 m/s and the incident wave height is 0.75–0.90 m,wetlands’wave attenuation capacity can be reduced by nearly 10%compared with pure wave conditions,which provides implications for critical design conditions for coastal safety.The obtained results and the developed model are valuable for the design and implementation of wetland-based coastal defense.The code of the developed model has been made open source,in the hope to assist further research and coastal management.
基金supported by the Joint Research Project Sustainable Deltas co-funded by the National Natural Science Foundation of China(NSFCGrant No.51761135022)+11 种基金the Dutch Research Council(NWOGrant No.ALWSD.2016.026)the Engineering and Physical Sciences Research Council(EPSRCGrant No.EP/R024537/1)the National Natural Science Foundation of China(Grant No.42176202)the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory,Zhuhai(Grant No.311021004)the Guangdong Provincial Department of Science and Technology(Grant No.2019ZT08G090)the 111 Project(Grant No.B21018)the ERC H2020 ESTUARIES Project(Grant No.647570)the Horizon 2020 Marie Skłodowska-Curie Actions Individual Fellowship(Grant No.896888)the China Scholarship Council(Grant No.201706710005)the NWO“LIVING DIKES e Realising Resilient and Climate-Proof Coastal Protection”Project(Grant No.NWA.1292.19.257)。
文摘Nature-based coastal protection is increasingly recognised as a potentially sustainable and cost-effective solution to reduce coastal flood risk.It uses coastal ecosystems such as mangrove forests to create resilient designs for coastal flood protection.However,to use mangroves effectively as a nature-based measure for flood risk reduction,we must understand the biophysical processes that govern risk reduction capacity through mangrove ecosystem size and structure.In this perspective,we evaluate the current state of knowledge on local physical drivers and ecological processes that determine mangrove functioning as part of a nature-based flood defence.We show that the forest properties that comprise coastal flood protection are well-known,but models cannot yet pinpoint how spatial heterogeneity of the forest structure affects the capacity for wave or surge attenuation.Overall,there is relatively good understanding of the ecological processes that drive forest structure and size,but there is a lack of knowledge on how daily bed-level dynamics link to long-term biogeomorphic forest dynamics,and on the role of combined stressors influencing forest retreat.Integrating simulation models of forest structure under changing physical(e.g.due to sea-level change)and ecological drivers with hydrodynamic attenuation models will allow for better projections of long-term natural coastal protection.
基金supported by the National Natural Science Foundation of China(Grant No.11374124)
文摘The strong-field coherent control of the nonresonant ionization of nitrous oxide using shaped pulses is investigated.We study the dependence of periodic coherent oscillation of the total ionization yield on the variation of laser phase parameters. The physical mechanism of the strong-field coherent control is investigated experimentally and theoretically by the nonresonant spectral phase interferences in the frequency domain. We show that the intense shaped pulses with broadband and off-resonance can be used as a robust strong-field coherent control method.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10299040);National Basic Research Priorities Programme of China (Grant No. 2001CB711201).
文摘ZnS nano-particles with average sizes of 10 nm and 5 nm were fabricated by sol-gel method, and their pressure-induced phase transformations were in-situ examined in a diamond anvil cell by energy dispersive X-ray diffraction (EDXD) from ambient pressure to 35.0 GPa. From the obtained interplanar spacing data,the volume compression ratios were derived at different pressures, and then the bulk modulus and its pressure derivative were obtained by fitting to the Murnaghan equation. It is found that both ZnS nano-particles initially in the zinc-blende phase transformed to cubic NaCl structure in the presence of pressure and the transition was reversible when the pressure was released. Moreover, it is suggested that a smaller particle size will induce a larger transition pressure.
基金This work was supported by the Chinese Academy of Engineering Physics (No.51480030105JW1301) and the National Natural Science Foundation of China (No.10534010, No.10374036, and No.10374037).
文摘Using density functional theory with generalized gradient approximation and hybrid functional, we studied the properties of energy, charge population, and vibration of CH2 and CH3 adsorbed on Cun (n=1-6) clusters. The results show that the DFT calculation with the hybrid functional matches the experimental results better in both cases. The calculation results indicate that the adsorption of CH2 is stronger than that of CH3. During adsorption, the charges transfer from Cu to CH2 or CH3. The obtained vibrational frequencies for different modes of CH2 and CH3 adsorbed on Cun agree well with the experimental results for the adsorption on Cu(111) surface.
基金Project supported by the National Natural Science Foundation of China(Grant No.11374124)
文摘Coherent control of fragmentation of CH_3I using shaped femtosecond pulse train is investigated.The dissociation processes can be modulated by changing the separation of the shaped pulse train, and the yield of I^+under the irradiation of the optimal pulse is significantly increased compared with that using the transform-limited pulse.We discuss the control mechanism of dissociation processes with coherent interference in time domain.A three-pulse control model is proposed to explain the counterintuitive experimental results.
基金financially supported by the National Natural Science Foundation of China (No.52104406)the Natural Science Foundation of Hunan Province (No.2022JJ20074)+1 种基金the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.52121004)the National Natural Science Foundation of China for Distinguished Young Scholars (No.51825403)。
文摘Arsenic materials have attracted great attention due to their unique properties.However,research concerning iron-arsenic(Fe-As) alloys is very scarce due to the volatility of As at low temperature and the high melting point of Fe.Herein,a new Fe-As alloy was obtained by mechanical alloying(MA) followed by vacuum hot-pressed sintering(VHPS).Moreover,a systematic study was carried out on the microstructural evolution,phase composition,leaching toxicity of As,and physical and mechanical properties of Fe-As alloys with varying weight fractions of As(20%,25%,30%,35%,45%,55%,65%,and 75%).The results showed that pre-alloyed metallic powders(PAMPs) have a fine grain size and specific supersaturated solid solution after MA,which could effectively improve the mechanical properties of Fe-As alloys by VHPS.A high density(> 7.350 g·cm^(-3)),low toxicity,and excellent mechanical properties could be obtained for FeAs alloys sintered via VHPS by adding an appropriate amount of As,which is more valuable than commercial Fe-As products.The Fe-25% As alloy with low toxicity and a relatively high density(7.635 g·cm^(-3)) provides an ultra-high compressive strength(1989.19 MPa),while the Fe-65% As alloy owns the maximum Vickers hardness(HVo.5 899.41).After leaching by the toxicity characteristic leaching procedure(TCLP),these alloys could still maintain good mechanical performance,and the strengthening mechanisms of Fe-As alloys before and after leaching were clarified.Changes in the grain size,micro structure,and phase distribution induced significant differences in the compressive strength and hardness.