Axon regeneration is crucial for recovery from neurological diseases. Numerous studies have identified several genes, microRNAs (miRNAs), and transcription factors (TFs) that influence axon regeneration. However, ...Axon regeneration is crucial for recovery from neurological diseases. Numerous studies have identified several genes, microRNAs (miRNAs), and transcription factors (TFs) that influence axon regeneration. However, the regulatory networks involved have not been fully elucidated. In the present study, we analyzed a regulatory network of 51 miRNAs, 27 TFs, and 59 target genes, which is involved in axon regeneration. We identified 359 pairs of feed- forward loops (FFLs), seven important genes (Naplll, Arhgef12, Sema6d, Akt3, Trim2, Rabllfip2, and Rps6ka3), six important miRNAs (hsa-miR-204-5p, hsa-miR-124-3p, hsa-miR-26a-5p, hsa-miR-16-5p, hsa-miR-17-5p, and hsa- miR-15b-5p), and eight important TFs (Smada2, Flil, Wtl, Sp6, Sp3, Smad4, Smad5, and Crebl), which appear to play an important role in axon regeneration. Functional enrichment analysis revealed that axon-associated genes are involved mainly in the regulation of cellular component organization, axonogenesis, and cell morphogenesis during neuronal differentiation. However, these findings need to be validated by further studies.展开更多
基金Project supported by the Key Project of Hebei North University(No.120177)the Science and Technology Bureau Research Development Plan of Zhangjiakou City in Hebei(No.0911021D-4)China
文摘Axon regeneration is crucial for recovery from neurological diseases. Numerous studies have identified several genes, microRNAs (miRNAs), and transcription factors (TFs) that influence axon regeneration. However, the regulatory networks involved have not been fully elucidated. In the present study, we analyzed a regulatory network of 51 miRNAs, 27 TFs, and 59 target genes, which is involved in axon regeneration. We identified 359 pairs of feed- forward loops (FFLs), seven important genes (Naplll, Arhgef12, Sema6d, Akt3, Trim2, Rabllfip2, and Rps6ka3), six important miRNAs (hsa-miR-204-5p, hsa-miR-124-3p, hsa-miR-26a-5p, hsa-miR-16-5p, hsa-miR-17-5p, and hsa- miR-15b-5p), and eight important TFs (Smada2, Flil, Wtl, Sp6, Sp3, Smad4, Smad5, and Crebl), which appear to play an important role in axon regeneration. Functional enrichment analysis revealed that axon-associated genes are involved mainly in the regulation of cellular component organization, axonogenesis, and cell morphogenesis during neuronal differentiation. However, these findings need to be validated by further studies.