The Hot Universe Baryon Surveyor (HUBS) mission will carry a nested X-ray telescope capable of observing an energy range from 0.5 keV to 2 keV to study hot baryon evolution. In this paper, we report the latest progres...The Hot Universe Baryon Surveyor (HUBS) mission will carry a nested X-ray telescope capable of observing an energy range from 0.5 keV to 2 keV to study hot baryon evolution. In this paper, we report the latest progress in the design and construction of nested X-ray telescopes which were designed to use a three-stage conic-approximation type assembly to simplify the manufacturing process. The mirror substrate is made using the thermal glass slumping method, with mirrors characterized by a root-mean-square roughness of 0.3 nm, with expected high reflectivity and good thermal stability. We also discuss methods of telescope construction and conduct a deformation analysis of the manufactured mirror. The in situ measurement system program is developed to guide the telescope assembly process.展开更多
The Solar Upper Transition Region Imager(SUTRI)onboard the Space Advanced Technology demonstration satellite(SATech-01),which was launched to a Sun-synchronous orbit at a height of~500 km in 2022 July,aims to test the...The Solar Upper Transition Region Imager(SUTRI)onboard the Space Advanced Technology demonstration satellite(SATech-01),which was launched to a Sun-synchronous orbit at a height of~500 km in 2022 July,aims to test the on-orbit performance of our newly developed Sc/Si multi-layer reflecting mirror and the 2k×2k EUV CMOS imaging camera and to take full-disk solar images at the Ne VII 46.5 nm spectral line with a filter width of~3 nm.SUTRI employs a Ritchey-Chrétien optical system with an aperture of 18 cm.The on-orbit observations show that SUTRI images have a field of view of~416×416 and a moderate spatial resolution of~8″without an image stabilization system.The normal cadence of SUTRI images is 30 s and the solar observation time is about16 hr each day because the earth eclipse time accounts for about 1/3 of SATech-01's orbit period.Approximately15 GB data is acquired each day and made available online after processing.SUTRI images are valuable as the Ne VII 46.5 nm line is formed at a temperature regime of~0.5 MK in the solar atmosphere,which has rarely been sampled by existing solar imagers.SUTRI observations will establish connections between structures in the lower solar atmosphere and corona,and advance our understanding of various types of solar activity such as flares,filament eruptions,coronal jets and coronal mass ejections.展开更多
The transition region is the key region between the lower solar atmosphere and the corona, which has been limitedly understood by human beings. Therefore, the Solar Upper Transition Region Imager(SUTRI) was proposed b...The transition region is the key region between the lower solar atmosphere and the corona, which has been limitedly understood by human beings. Therefore, the Solar Upper Transition Region Imager(SUTRI) was proposed by Chinese scientists and launched in 2022 July. Right now, the first imaging observation of the upper transition region around 46.5 nm has been carried out by SUTRI. To ensure the spectral and temporal resolution of the SUTRI telescope, we have developed a narrowband Sc/Si multilayer. Based on the extreme ultraviolet(EUV)reflectivity measurements, the multilayer structure has been modified for ensuring the peak position of reflectivity was at 46.5 nm. Finally, the narrowband Sc/Si multilayer was successfully deposited on the hyperboloid primary mirror and secondary mirrors. The deviation of multilayer thickness uniformity was below than 1%, and the average EUV reflectivity at 46.1 nm was 27.8% with a near-normal incident angle of 5°. The calculated bandwidth of the reflectivity curve after primary and secondary mirrors was 2.82 nm, which could ensure the requirements of spectral resolution and reflectivity of SUTRI telescope to achieve its scientific goals.展开更多
This paper describes a fabrication process for the hyperboloidal concave mirror of a 46.5 nm telescope. The180 mm aperture hyperboloidal concave mirror and 70 mm aperture compensator are machined directly from chemica...This paper describes a fabrication process for the hyperboloidal concave mirror of a 46.5 nm telescope. The180 mm aperture hyperboloidal concave mirror and 70 mm aperture compensator are machined directly from chemical mechanical polishing of a spherical surface to a high-accuracy aspherical surface by ion beam figuring.The aspherical measurement method is the Dall null test. To minimize system errors in the measurement process,the rotational measurement method with six rotations is used in the null test. The results of the analysis for the ME(first solve the machined surface profile, then solve the system errors) and EM(first solve the system errors, then solve the machined surface profile) methods of calculation in the measurement are given. The ME method is a more accurate rotational test method, and the six rotations are appropriate for rotational measurements. After the figuring process, the hyperboloidal concave mirror surface profile reached 8.27 nm rms and the compensator surface profile is approximately 4 nm rms. The roughness of the hyperboloidal concave mirror is smooth to0.160 nm rms.展开更多
The Solar Upper Transition Region Imager(SUTRI)focuses on the solar transition region to achieve dynamic imaging observation of the upper transition region.In this paper,we report the optical system design,mechanical ...The Solar Upper Transition Region Imager(SUTRI)focuses on the solar transition region to achieve dynamic imaging observation of the upper transition region.In this paper,we report the optical system design,mechanical design,ultrasmooth mirror manufacture and measurement,EUV multilayer film coating,prelaunch installation and calibration for the SUTRI payload at IPOE,Tongji University.Finally,the SUTRI carried by the SATech-01 satellite was successfully set to launch.All functions of this telescope were normal,and the observation results obtained in orbit were consistent with the design.展开更多
This paper investigates the stability of time-delay systems via a multiple integral approach. Based on the refined Jensen-based inequality, a novel multiple integral inequality is proposed. Applying the multiple integ...This paper investigates the stability of time-delay systems via a multiple integral approach. Based on the refined Jensen-based inequality, a novel multiple integral inequality is proposed. Applying the multiple integral inequality to estimate the derivative of Lyapunov-Krasovskii functional(LKF) with multiple integral terms, a novel stability condition is formulated for the linear time-delay systems. Two numerical examples are employed to demonstrate the improvements of our results.展开更多
This paper presents a new design approach to achieve decentralized optimal control of high-dimension complex singular systems with dynamic uncertainties. Based on robust adaptive dynamic programming(robust ADP) method...This paper presents a new design approach to achieve decentralized optimal control of high-dimension complex singular systems with dynamic uncertainties. Based on robust adaptive dynamic programming(robust ADP) method, controllers for solving the singular systems optimal control problem are designed. The proposed algorithm can work well when the system model is not exactly known but the input and output data can be measured. The policy iteration of each controller only uses their own states and input information for learning,and do not need to know the whole system dynamics. Simulation results on the New England 10-machine 39-bus test system show the effectiveness of the designed controller.展开更多
Dy:Lu2O3 was grown by the float-zone (Fz) method. According to the absorption spectrum, the Judd-Ofelt (JO) parameters Ω2, Ω4, and Ω6 were calculated to be 4.86 × 10-20 cm2, 2.02 × 10-20 cm2, and 1.7...Dy:Lu2O3 was grown by the float-zone (Fz) method. According to the absorption spectrum, the Judd-Ofelt (JO) parameters Ω2, Ω4, and Ω6 were calculated to be 4.86 × 10-20 cm2, 2.02 × 10-20 cm2, and 1.76 ×10-20 cm2, respectively. The emission cross-section at 574 nm corresponding to the 4F9/2 →6H13/2 transition was calculated to be 0.53 ×10 20 cm2. The yellow (4F9/2 →6H13/2 transition) to blue (4F9/2 →6H15/2 transition) intensity ratio ranges up to 12.9. The fluorescence lifetime of the 4F9/2 energy level was measured to be 112.1 μs. These results reveal that Dy:Lu2O3 is a promising material for use in yellow lasers.展开更多
A bilinear fault detection observer is proposed for a class of continuous time singular bilinear systems subject to unknown input disturbance and fault. By singular value decomposition on the original system, a biline...A bilinear fault detection observer is proposed for a class of continuous time singular bilinear systems subject to unknown input disturbance and fault. By singular value decomposition on the original system, a bilinear fault detection observer is proposed for the decomposed system via an algebraic Riccati equation, and the domain of attraction of the state estimation error is estimated. A design procedure is presented to determine the fault detection threshold. A model of flexible joint robot is used to demonstrate the effectiveness of the proposed method.展开更多
Global exponential stability problems are investigated for cellular neural networks (CNN) with multiple time-varying delays. Several new criteria in linear matrix inequality form or in algebraic form are presented t...Global exponential stability problems are investigated for cellular neural networks (CNN) with multiple time-varying delays. Several new criteria in linear matrix inequality form or in algebraic form are presented to ascertain the uniqueness and global exponential stability of the equilibrium point for CNN with multiple time-varying delays and with constant time delays. The proposed method has the advantage of considering the difference of neuronal excitatory and inhibitory effects, which is also computationally efficient as it can be solved numerically using the recently developed interior-point algorithm or be checked using simple algebraic calculation. In addition, the proposed results generalize and improve upon some previous works. Two numerical examples are used to show the effectiveness of the obtained results.展开更多
Robust fault diagnosis based on adaptive observer is studied for a class of nonlinear systems up to output injection. Adaptive fault updating laws are designed to guarantee the stability of the diagnosis system. The u...Robust fault diagnosis based on adaptive observer is studied for a class of nonlinear systems up to output injection. Adaptive fault updating laws are designed to guarantee the stability of the diagnosis system. The upper bounds of the state estimation error and fault estimation error of the adaptive observer are given respectively and the effects of parameter in the adaptive updating laws on fault estimation accuracy are also discussed. Simulation example demonstrates the effectiveness of the proposed methods and the analysis results.展开更多
The purpose of the paper is to present an adaptive control method for the synchronization of different classes of chaotic neural networks. A new sufficient condition for the global synchronization of two kinds of chao...The purpose of the paper is to present an adaptive control method for the synchronization of different classes of chaotic neural networks. A new sufficient condition for the global synchronization of two kinds of chaotic neural networks is derived. The proposed control method is efficient for implementing the synchronization when the parameters of the drive system are different from those of the response system. A numerical example is used to demonstrate the validity of the proposed method and the obtained result.展开更多
A bilinear observer is proposed for a class of singular bilinear system subject to unknown input disturbance. Based on singular value decomposition technique, the existence of the solution to the decomposed system is ...A bilinear observer is proposed for a class of singular bilinear system subject to unknown input disturbance. Based on singular value decomposition technique, the existence of the solution to the decomposed system is presented. Then a bilinear observer is proposed for the decomposed system based on an algebraic Riccati equation, and the domain of attraction of the state estimation error is derived. Finally, a detailed design procedure is given to design a bilinear observer for a model of flexible joint robot, which demonstrates the effectiveness of the proposed method.展开更多
This paper deals with consensus robust output regulation of discrete-time linear multi-agent systems under a directed interaction topology. The digraph is assumed to contain a spanning tree. Every agent or subsystem i...This paper deals with consensus robust output regulation of discrete-time linear multi-agent systems under a directed interaction topology. The digraph is assumed to contain a spanning tree. Every agent or subsystem is identical and uncertain, but subsystems have different external disturbances. Based on the internal model and general discrete-time algebraic Riccati equation, a distributed consensus protocol is proposed to solve the regulator problem. A numerical simulation demonstrates the effectiveness of the proposed theoretical results.展开更多
An approach for studying the influence of nano-particles on the structural properties of deposited thin films is proposed. It is based on the molecular dynamic modeling of the deposition process in the presence of con...An approach for studying the influence of nano-particles on the structural properties of deposited thin films is proposed. It is based on the molecular dynamic modeling of the deposition process in the presence of contaminating nano-particles. The nano-particle is assumed to be immobile and its interaction with film atoms is described by a spherically symmetric potential. The approach is applied to the investigation of properties of silicon dioxide films. Visualization tools are used to investigate the porosity associated with nano-particles. The structure of the film near the nano-particle is studied using the radial distribution function. It is found that fluctuations of film density near the nano-particles are essentially different in the cases of low-energy and high-energy deposition processes.展开更多
Two-dimensional (2D) materials exhibit exceptionally strong nonlinear optical responses, benefiting from their reduced dimensionality, relaxed phase-matching requirements, and enhanced light-matter interaction. With a...Two-dimensional (2D) materials exhibit exceptionally strong nonlinear optical responses, benefiting from their reduced dimensionality, relaxed phase-matching requirements, and enhanced light-matter interaction. With additional degrees of freedom in the modulation of the physical properties by stacking 2D layers together, nonlinear optics of 2D heterostructures becomes increasingly fascinating. In this perspective, we provide a brief overview of recent advances in the field of nonlinear optics of 2D heterostructures, with a particular focus on their remarkable capabilities in characterization and modulation. Given the recent advances and the emergence of novel heterostructures, combined with innovative tuning knobs and advanced nonlinear optical techniques, we anticipate deeper insights into the underlying mechanisms and more associated applications in this rapidly evolving field.展开更多
Exceptional point (EP) is a special degeneracy of non-Hermitian systems. One-dimensional transmission systems operating at EPs are widely studied and applied to chiral conversion and sensing. Lately, two-dimensional s...Exceptional point (EP) is a special degeneracy of non-Hermitian systems. One-dimensional transmission systems operating at EPs are widely studied and applied to chiral conversion and sensing. Lately, two-dimensional systems at EPs have been exploited for their exotic scattering features, yet so far been limited to only the non-visible waveband. Here, we report a universal paradigm for achieving a high-efficiency EP in the visible by leveraging interlayer loss to accurately control the interplay between the lossy structure and scattering lightwaves. A bilayer framework is demonstrated to reflect back the incident light from the left side ( | r_(−1) | >0.999) and absorb the incident light from the right side ( | r_(+1) | < 10^(–4)). As a proof of concept, a bilayer metasurface is demonstrated to reflect and absorb the incident light with experimental efficiencies of 88% and 85%, respectively, at 532 nm. Our results open the way for a new class of nanoscale devices and power up new opportunities for EP physics.展开更多
Thermomechanical damage of nodules in dielectric multilayer coatings that are irradiated by nanosecond laser pulses has been interpreted with respect to mechanical properties and electric-field enhancement.However,the...Thermomechanical damage of nodules in dielectric multilayer coatings that are irradiated by nanosecond laser pulses has been interpreted with respect to mechanical properties and electric-field enhancement.However,the effect of electric-field enhancement in nodular damage,especially the influence of electric-field distributions,has never been directly demonstrated through experimental results,which prevents the achievement of a clear understanding of the damage process of nodular defects.Here,a systematic and comparative study was designed to reveal how electric-field distributions affect the damage behavior of nodules.To obtain reliable results,two series of artificial nodules with different geometries and film absorption characteristics were prepared from monodisperse silica microspheres.After establishing simplified geometrical models of the nodules,the electric-field enhancement was simulated using a three-dimensional finite-difference time-domain code.Then,the damage morphologies of the artificial nodules were directly compared with the simulated electric-field intensity profiles.For both series of nodules,the damage morphologies reproduced our simulated electric-field intensity distributions very well.These results indicated that the electric-field distribution was actually a bridge that connected the nodular mechanical properties to the final thermomechanical damage.Understanding of the damage mechanism of nodules was deepened by obtaining data on the influence of electric-field distributions on the damage behavior of nodules.展开更多
基金supported by National Key R&D Program of China (2022YFF0709101)China National Space Administration (D050104)National Natural Science Foundation of China (62105244 and U2030111)。
文摘The Hot Universe Baryon Surveyor (HUBS) mission will carry a nested X-ray telescope capable of observing an energy range from 0.5 keV to 2 keV to study hot baryon evolution. In this paper, we report the latest progress in the design and construction of nested X-ray telescopes which were designed to use a three-stage conic-approximation type assembly to simplify the manufacturing process. The mirror substrate is made using the thermal glass slumping method, with mirrors characterized by a root-mean-square roughness of 0.3 nm, with expected high reflectivity and good thermal stability. We also discuss methods of telescope construction and conduct a deformation analysis of the manufactured mirror. The in situ measurement system program is developed to guide the telescope assembly process.
基金supported by the National Natural Science Foundation of China(NSFC)under Grants 11825301,12003016,12073077the National Key R&D Program of China No.2021YFA0718600+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences with the Grant No.XDA15018400the Youth Innovation Promotion Association of CAS(2023061)。
文摘The Solar Upper Transition Region Imager(SUTRI)onboard the Space Advanced Technology demonstration satellite(SATech-01),which was launched to a Sun-synchronous orbit at a height of~500 km in 2022 July,aims to test the on-orbit performance of our newly developed Sc/Si multi-layer reflecting mirror and the 2k×2k EUV CMOS imaging camera and to take full-disk solar images at the Ne VII 46.5 nm spectral line with a filter width of~3 nm.SUTRI employs a Ritchey-Chrétien optical system with an aperture of 18 cm.The on-orbit observations show that SUTRI images have a field of view of~416×416 and a moderate spatial resolution of~8″without an image stabilization system.The normal cadence of SUTRI images is 30 s and the solar observation time is about16 hr each day because the earth eclipse time accounts for about 1/3 of SATech-01's orbit period.Approximately15 GB data is acquired each day and made available online after processing.SUTRI images are valuable as the Ne VII 46.5 nm line is formed at a temperature regime of~0.5 MK in the solar atmosphere,which has rarely been sampled by existing solar imagers.SUTRI observations will establish connections between structures in the lower solar atmosphere and corona,and advance our understanding of various types of solar activity such as flares,filament eruptions,coronal jets and coronal mass ejections.
基金funded by the National Natural Science Foundation of China (NSFC) under Nos. 12003016, 12204353and 62105244。
文摘The transition region is the key region between the lower solar atmosphere and the corona, which has been limitedly understood by human beings. Therefore, the Solar Upper Transition Region Imager(SUTRI) was proposed by Chinese scientists and launched in 2022 July. Right now, the first imaging observation of the upper transition region around 46.5 nm has been carried out by SUTRI. To ensure the spectral and temporal resolution of the SUTRI telescope, we have developed a narrowband Sc/Si multilayer. Based on the extreme ultraviolet(EUV)reflectivity measurements, the multilayer structure has been modified for ensuring the peak position of reflectivity was at 46.5 nm. Finally, the narrowband Sc/Si multilayer was successfully deposited on the hyperboloid primary mirror and secondary mirrors. The deviation of multilayer thickness uniformity was below than 1%, and the average EUV reflectivity at 46.1 nm was 27.8% with a near-normal incident angle of 5°. The calculated bandwidth of the reflectivity curve after primary and secondary mirrors was 2.82 nm, which could ensure the requirements of spectral resolution and reflectivity of SUTRI telescope to achieve its scientific goals.
基金funded by the National Key R&D Program of China (2022YFF0709101)the National Natural Science Foundation of China (NSFC) under Nos. 62105244 and 61621001。
文摘This paper describes a fabrication process for the hyperboloidal concave mirror of a 46.5 nm telescope. The180 mm aperture hyperboloidal concave mirror and 70 mm aperture compensator are machined directly from chemical mechanical polishing of a spherical surface to a high-accuracy aspherical surface by ion beam figuring.The aspherical measurement method is the Dall null test. To minimize system errors in the measurement process,the rotational measurement method with six rotations is used in the null test. The results of the analysis for the ME(first solve the machined surface profile, then solve the system errors) and EM(first solve the system errors, then solve the machined surface profile) methods of calculation in the measurement are given. The ME method is a more accurate rotational test method, and the six rotations are appropriate for rotational measurements. After the figuring process, the hyperboloidal concave mirror surface profile reached 8.27 nm rms and the compensator surface profile is approximately 4 nm rms. The roughness of the hyperboloidal concave mirror is smooth to0.160 nm rms.
基金the National Key R&D Program of China(2022YFF0709101)the National Natural Science Foundation of China(NSFC)under grant Nos.61621001,62105244,12003016 and 12204353.
文摘The Solar Upper Transition Region Imager(SUTRI)focuses on the solar transition region to achieve dynamic imaging observation of the upper transition region.In this paper,we report the optical system design,mechanical design,ultrasmooth mirror manufacture and measurement,EUV multilayer film coating,prelaunch installation and calibration for the SUTRI payload at IPOE,Tongji University.Finally,the SUTRI carried by the SATech-01 satellite was successfully set to launch.All functions of this telescope were normal,and the observation results obtained in orbit were consistent with the design.
基金supported by National Natural Science Foundation of China(61473070,61433004)Fundamental Research Funds for the Central Universities(N130504002)SAPI Fundamental Research Funds(2013ZCX01)
基金supported by the National Natural Science Foundation of China(61473070,61433004,61627809)SAPI Fundamental Research Funds(2013ZCX01,2013ZCX14)
文摘This paper investigates the stability of time-delay systems via a multiple integral approach. Based on the refined Jensen-based inequality, a novel multiple integral inequality is proposed. Applying the multiple integral inequality to estimate the derivative of Lyapunov-Krasovskii functional(LKF) with multiple integral terms, a novel stability condition is formulated for the linear time-delay systems. Two numerical examples are employed to demonstrate the improvements of our results.
基金supported in part by the National Natural Science Foundation of China(61473070,61433004,61627809)SAPI Fundamental Research Funds(2018ZCX22)
文摘This paper presents a new design approach to achieve decentralized optimal control of high-dimension complex singular systems with dynamic uncertainties. Based on robust adaptive dynamic programming(robust ADP) method, controllers for solving the singular systems optimal control problem are designed. The proposed algorithm can work well when the system model is not exactly known but the input and output data can be measured. The policy iteration of each controller only uses their own states and input information for learning,and do not need to know the whole system dynamics. Simulation results on the New England 10-machine 39-bus test system show the effectiveness of the designed controller.
基金Project supported by the Fund of Key Laboratory of Optoelectronic Materials Chemistry and Physics,Chinese Academy of Sciences(Grant No.2008DP173016)the National Key Research and Development Program of China(Grant No.2016YFB1102202)the National Key Research and Development Program of China(Grant No.2016YFB0701002)
文摘Dy:Lu2O3 was grown by the float-zone (Fz) method. According to the absorption spectrum, the Judd-Ofelt (JO) parameters Ω2, Ω4, and Ω6 were calculated to be 4.86 × 10-20 cm2, 2.02 × 10-20 cm2, and 1.76 ×10-20 cm2, respectively. The emission cross-section at 574 nm corresponding to the 4F9/2 →6H13/2 transition was calculated to be 0.53 ×10 20 cm2. The yellow (4F9/2 →6H13/2 transition) to blue (4F9/2 →6H15/2 transition) intensity ratio ranges up to 12.9. The fluorescence lifetime of the 4F9/2 energy level was measured to be 112.1 μs. These results reveal that Dy:Lu2O3 is a promising material for use in yellow lasers.
基金This work was supported in part by National Nature Science Foundation of China (No. 60325311, 60534010, 60572070)the Funds for Creative Research Groups of China (No. 60521003)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0421).
文摘A bilinear fault detection observer is proposed for a class of continuous time singular bilinear systems subject to unknown input disturbance and fault. By singular value decomposition on the original system, a bilinear fault detection observer is proposed for the decomposed system via an algebraic Riccati equation, and the domain of attraction of the state estimation error is estimated. A design procedure is presented to determine the fault detection threshold. A model of flexible joint robot is used to demonstrate the effectiveness of the proposed method.
基金the National Natural Science Foundation of China (No.60274017, 60325311).
文摘Global exponential stability problems are investigated for cellular neural networks (CNN) with multiple time-varying delays. Several new criteria in linear matrix inequality form or in algebraic form are presented to ascertain the uniqueness and global exponential stability of the equilibrium point for CNN with multiple time-varying delays and with constant time delays. The proposed method has the advantage of considering the difference of neuronal excitatory and inhibitory effects, which is also computationally efficient as it can be solved numerically using the recently developed interior-point algorithm or be checked using simple algebraic calculation. In addition, the proposed results generalize and improve upon some previous works. Two numerical examples are used to show the effectiveness of the obtained results.
基金This work was supported by the National Natural Science Foundation of China (No. 60534010,60572070, 60521003) and the Program for Changjiang Scholars and Innovative Research Team in University.
文摘Robust fault diagnosis based on adaptive observer is studied for a class of nonlinear systems up to output injection. Adaptive fault updating laws are designed to guarantee the stability of the diagnosis system. The upper bounds of the state estimation error and fault estimation error of the adaptive observer are given respectively and the effects of parameter in the adaptive updating laws on fault estimation accuracy are also discussed. Simulation example demonstrates the effectiveness of the proposed methods and the analysis results.
基金the National Nature Science Foundation of China (No. 60774093, 60774082, 60572070)the National High TechnologyResearch and Develop Program of China (No. 2006AA04Z183)+1 种基金the National Postdoctor Foundation of China (No. 20070411075)the NaturalScience Foundation of Liaoning Province (No. 20072025)
文摘The purpose of the paper is to present an adaptive control method for the synchronization of different classes of chaotic neural networks. A new sufficient condition for the global synchronization of two kinds of chaotic neural networks is derived. The proposed control method is efficient for implementing the synchronization when the parameters of the drive system are different from those of the response system. A numerical example is used to demonstrate the validity of the proposed method and the obtained result.
基金This work was supported by the National Natural Science Foundation of China (No.60244017, 60325311).
文摘A bilinear observer is proposed for a class of singular bilinear system subject to unknown input disturbance. Based on singular value decomposition technique, the existence of the solution to the decomposed system is presented. Then a bilinear observer is proposed for the decomposed system based on an algebraic Riccati equation, and the domain of attraction of the state estimation error is derived. Finally, a detailed design procedure is given to design a bilinear observer for a model of flexible joint robot, which demonstrates the effectiveness of the proposed method.
文摘This paper deals with consensus robust output regulation of discrete-time linear multi-agent systems under a directed interaction topology. The digraph is assumed to contain a spanning tree. Every agent or subsystem is identical and uncertain, but subsystems have different external disturbances. Based on the internal model and general discrete-time algebraic Riccati equation, a distributed consensus protocol is proposed to solve the regulator problem. A numerical simulation demonstrates the effectiveness of the proposed theoretical results.
基金Supported by the RFBR under Grant No 17-57-53091the National Natural Science Foundation of China under Grant No11611530687
文摘An approach for studying the influence of nano-particles on the structural properties of deposited thin films is proposed. It is based on the molecular dynamic modeling of the deposition process in the presence of contaminating nano-particles. The nano-particle is assumed to be immobile and its interaction with film atoms is described by a spherically symmetric potential. The approach is applied to the investigation of properties of silicon dioxide films. Visualization tools are used to investigate the porosity associated with nano-particles. The structure of the film near the nano-particle is studied using the radial distribution function. It is found that fluctuations of film density near the nano-particles are essentially different in the cases of low-energy and high-energy deposition processes.
基金X.Z.,C.W.,Z.Z.and T.J.acknowledge the support from the National Natural Science Foundation of China(Grant Nos.62005198 and 62175188)the Science and Technology Commission of Shanghai Municipality(Grant Nos.23ZR1465800 and 23190712300)+4 种基金X.C.acknowledges the support from the National Natural Science Foundation of China(Grant Nos.61925504,62020106009,and 6201101335)the Science and Technology Commission of Shanghai Municipality(Grant Nos.17JC1400800,20JC1414600,and 21JC1406100)the Special Development Funds for Major Projects of Shanghai Zhangjiang National Independent Innovation Demonstration Zone(Grant No.ZJ2021-ZD-008)Z.W.acknowledges the support from the National Natural Science Foundation of China(Grant Nos.62192770,62192772,and 61621001).D.H.acknowledges the support from the Fundamental Research Funds for the Central Universities.
文摘Two-dimensional (2D) materials exhibit exceptionally strong nonlinear optical responses, benefiting from their reduced dimensionality, relaxed phase-matching requirements, and enhanced light-matter interaction. With additional degrees of freedom in the modulation of the physical properties by stacking 2D layers together, nonlinear optics of 2D heterostructures becomes increasingly fascinating. In this perspective, we provide a brief overview of recent advances in the field of nonlinear optics of 2D heterostructures, with a particular focus on their remarkable capabilities in characterization and modulation. Given the recent advances and the emergence of novel heterostructures, combined with innovative tuning knobs and advanced nonlinear optical techniques, we anticipate deeper insights into the underlying mechanisms and more associated applications in this rapidly evolving field.
基金supported by the National Natural Science Foundation of China (61925504, 62192770, 62305252, 61621001, 62205246, 62020106009, 6201101335, 62205249, 62192772, 62192771)Shanghai Pilot Program for Basic Research, Science and Technology Commission of Shanghai Municipality (17JC1400800, 20JC1414600, 21JC1406100)+3 种基金the “Shu Guang” project supported by Shanghai Municipal Education Commission and Shanghai Education (17SG22)Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100)Special Development Funds for Major Projects of Shanghai Zhangjiang National Independent Innovation Demonstration Zone (Grant No. ZJ2021-ZD-008)The Fundamental Research Funds for the Central Universities, Project funded by China Postdoctoral Science Foundation (2022M712401).
文摘Exceptional point (EP) is a special degeneracy of non-Hermitian systems. One-dimensional transmission systems operating at EPs are widely studied and applied to chiral conversion and sensing. Lately, two-dimensional systems at EPs have been exploited for their exotic scattering features, yet so far been limited to only the non-visible waveband. Here, we report a universal paradigm for achieving a high-efficiency EP in the visible by leveraging interlayer loss to accurately control the interplay between the lossy structure and scattering lightwaves. A bilayer framework is demonstrated to reflect back the incident light from the left side ( | r_(−1) | >0.999) and absorb the incident light from the right side ( | r_(+1) | < 10^(–4)). As a proof of concept, a bilayer metasurface is demonstrated to reflect and absorb the incident light with experimental efficiencies of 88% and 85%, respectively, at 532 nm. Our results open the way for a new class of nanoscale devices and power up new opportunities for EP physics.
基金This work was partly supported by the National Natural Science Foundation of China(Grant Nos.61235011,61008030,61108014,61205124)the ChenGuang Project of Shanghai Municipal Education Commission(Grant No.10CG19)+1 种基金the Specialized Research Fund for the Doctoral Program of High Education(Grant No.20100072120037)the National 863 Program.
文摘Thermomechanical damage of nodules in dielectric multilayer coatings that are irradiated by nanosecond laser pulses has been interpreted with respect to mechanical properties and electric-field enhancement.However,the effect of electric-field enhancement in nodular damage,especially the influence of electric-field distributions,has never been directly demonstrated through experimental results,which prevents the achievement of a clear understanding of the damage process of nodular defects.Here,a systematic and comparative study was designed to reveal how electric-field distributions affect the damage behavior of nodules.To obtain reliable results,two series of artificial nodules with different geometries and film absorption characteristics were prepared from monodisperse silica microspheres.After establishing simplified geometrical models of the nodules,the electric-field enhancement was simulated using a three-dimensional finite-difference time-domain code.Then,the damage morphologies of the artificial nodules were directly compared with the simulated electric-field intensity profiles.For both series of nodules,the damage morphologies reproduced our simulated electric-field intensity distributions very well.These results indicated that the electric-field distribution was actually a bridge that connected the nodular mechanical properties to the final thermomechanical damage.Understanding of the damage mechanism of nodules was deepened by obtaining data on the influence of electric-field distributions on the damage behavior of nodules.