The structural evolution of non dendritic AlSi7Mg alloy during reheating in resistance furnace was studied. The alloy ingots were produced by electromagnetic stirring during solidification. It was found that, the Si p...The structural evolution of non dendritic AlSi7Mg alloy during reheating in resistance furnace was studied. The alloy ingots were produced by electromagnetic stirring during solidification. It was found that, the Si phase in eutectic dissolves in a way of diffusion toward α phase, its appearance changes from flake to dot like, and tends to be fine and spheroidal with increasing reheating temperature. The thinner the flake, the lower the temperature for the occurrence of this process, and the higher the transforming speed. The eutectic melts partially when Si phase dissolves to some extent, and the morphology and size of primary α phase begin to change. The dendrite and rosette α phases tends to sphericize. The size of the former becomes larger, while the size of the latter reduces to be 1/2~1/4 of the original size. The spheroidal primary α phase has a tendency of grain growth.展开更多
文摘The structural evolution of non dendritic AlSi7Mg alloy during reheating in resistance furnace was studied. The alloy ingots were produced by electromagnetic stirring during solidification. It was found that, the Si phase in eutectic dissolves in a way of diffusion toward α phase, its appearance changes from flake to dot like, and tends to be fine and spheroidal with increasing reheating temperature. The thinner the flake, the lower the temperature for the occurrence of this process, and the higher the transforming speed. The eutectic melts partially when Si phase dissolves to some extent, and the morphology and size of primary α phase begin to change. The dendrite and rosette α phases tends to sphericize. The size of the former becomes larger, while the size of the latter reduces to be 1/2~1/4 of the original size. The spheroidal primary α phase has a tendency of grain growth.