In coal,the gas mainly exists in a free or an adsorption state.When the coal containing gas is damaged,gas desorption and diffusion will occur which can result in gas disaster.This research on gas desorption and diffu...In coal,the gas mainly exists in a free or an adsorption state.When the coal containing gas is damaged,gas desorption and diffusion will occur which can result in gas disaster.This research on gas desorption and diffusion provides a theoretical basis for gas disaster mechanism and prevention.The influence of pressure and temperature on gas diffusion is studied by the experiment.And the mechanism of pressure and temperature on gas diffusion is also analysed.The research results indicate that gas diffusion capacity increases with increasing temperature under the same pressure for the same coal sample.This is mainly because the temperature increases,gas molecular hot motion is severer,kinetic energy of gas molecular increases,and gas desorption quickens,therefore gas diffusion capacity changes stronger.Under other unchanged conditions,the greater gas adsorption balance pressure,the more gas adsorption content,and the higher the initial gas concentration.When gas diffusion begins,the greater the gas concentration gradient,the faster the gas diffusion speeds.展开更多
This study was performed to investigate the spectral characteristics of micro-seismic signals observed during the rupture of coal. Coal rupture micro-seismic observations were obtained on a test system that included a...This study was performed to investigate the spectral characteristics of micro-seismic signals observed during the rupture of coal. Coal rupture micro-seismic observations were obtained on a test system that included an electro-hydraulic servo pressure tester controlled by a YAW microcomputer, a micro-seismic sensor, a loading system, and a signal collection system. The results show that the micro-seismic signal increases with increasing compressive stress at the beginning of coal rupture. The signal remains stable for a period at this stage. A large number of micro-seismic signals appear immediately before the main rupture event. The frequency of micro-seismic events reaches a maximum immediately after the coal ruptures. Micro-seismic signals were decomposed into several Intrinsic Mode Functions (IMF's) by the empirical mode decomposition (EMD) method using a Hilbert-Huang transform (HHT). The main fre- quency band of the micro-seismic signals was found to range from 10 to 100 Hz in the Hilbert energy spectrum and from marginal spectrum calculations. The advantage of applying an HHT is that this can extract the main features of the signal. This fact was confirmed by an HHT analysis of the coal micro-seis- mic signals that shows the technique is useful in the field of coal rupture.展开更多
基金foundation by the State KeyBasic Research Program of China(No.2011CB201202)the Basic Science Research Special Foundation of China University of Mining&Technology(Beijing)(No.2009KZ03)the Basic Science Research Special Foundation of China University of Mining&Technology(Beijing)(No.2009QZ09)
文摘In coal,the gas mainly exists in a free or an adsorption state.When the coal containing gas is damaged,gas desorption and diffusion will occur which can result in gas disaster.This research on gas desorption and diffusion provides a theoretical basis for gas disaster mechanism and prevention.The influence of pressure and temperature on gas diffusion is studied by the experiment.And the mechanism of pressure and temperature on gas diffusion is also analysed.The research results indicate that gas diffusion capacity increases with increasing temperature under the same pressure for the same coal sample.This is mainly because the temperature increases,gas molecular hot motion is severer,kinetic energy of gas molecular increases,and gas desorption quickens,therefore gas diffusion capacity changes stronger.Under other unchanged conditions,the greater gas adsorption balance pressure,the more gas adsorption content,and the higher the initial gas concentration.When gas diffusion begins,the greater the gas concentration gradient,the faster the gas diffusion speeds.
基金support for this work provided by the National Science and Technology Planning Project (No. 2009BAK54B03)the National Natural Science Foundation of China (No. 50834005)
文摘This study was performed to investigate the spectral characteristics of micro-seismic signals observed during the rupture of coal. Coal rupture micro-seismic observations were obtained on a test system that included an electro-hydraulic servo pressure tester controlled by a YAW microcomputer, a micro-seismic sensor, a loading system, and a signal collection system. The results show that the micro-seismic signal increases with increasing compressive stress at the beginning of coal rupture. The signal remains stable for a period at this stage. A large number of micro-seismic signals appear immediately before the main rupture event. The frequency of micro-seismic events reaches a maximum immediately after the coal ruptures. Micro-seismic signals were decomposed into several Intrinsic Mode Functions (IMF's) by the empirical mode decomposition (EMD) method using a Hilbert-Huang transform (HHT). The main fre- quency band of the micro-seismic signals was found to range from 10 to 100 Hz in the Hilbert energy spectrum and from marginal spectrum calculations. The advantage of applying an HHT is that this can extract the main features of the signal. This fact was confirmed by an HHT analysis of the coal micro-seis- mic signals that shows the technique is useful in the field of coal rupture.