滚动轴承是机械设备中的重要零件,其工作状态直接关系着设备的运行,一旦发生故障会引起整个设备的正常运行,甚至引发重大的安全事故,因此,对其剩余寿命预测对设备的健康管理具有重要意义。提出了一种基于自编码-长短时记忆网络(autoenco...滚动轴承是机械设备中的重要零件,其工作状态直接关系着设备的运行,一旦发生故障会引起整个设备的正常运行,甚至引发重大的安全事故,因此,对其剩余寿命预测对设备的健康管理具有重要意义。提出了一种基于自编码-长短时记忆网络(autoencoder-long short term memory, AELSTM)迁移学习(transfer learning, TL)的滚动轴承剩余寿命预测方法,首先采用自动编码器自动提取源域中原始振动信号中的特征,再构建双层LSTM模型对剩余寿命进行预测,通过源域中训练获得AELSTM模型,再用目标域中的数据对AELSTM模型训练,完成对模型参数的微调,最后用调整好的模型对目标域中的数据进行预测。通过参数共享和微调两种方法,大大简化了模型在目标域上的训练过程。试验结果表明,在同轴承不同工况下,所提出模型相比于其他4种迁移学习方法的均方根误差分别降低了45.9%、58.9%、42.8%以及83.8%;在不同轴承不同工况下,所提出模型的均方根误差分别降低了16.9%、18.9%、11.7%以及8.9%。展开更多
文摘滚动轴承是机械设备中的重要零件,其工作状态直接关系着设备的运行,一旦发生故障会引起整个设备的正常运行,甚至引发重大的安全事故,因此,对其剩余寿命预测对设备的健康管理具有重要意义。提出了一种基于自编码-长短时记忆网络(autoencoder-long short term memory, AELSTM)迁移学习(transfer learning, TL)的滚动轴承剩余寿命预测方法,首先采用自动编码器自动提取源域中原始振动信号中的特征,再构建双层LSTM模型对剩余寿命进行预测,通过源域中训练获得AELSTM模型,再用目标域中的数据对AELSTM模型训练,完成对模型参数的微调,最后用调整好的模型对目标域中的数据进行预测。通过参数共享和微调两种方法,大大简化了模型在目标域上的训练过程。试验结果表明,在同轴承不同工况下,所提出模型相比于其他4种迁移学习方法的均方根误差分别降低了45.9%、58.9%、42.8%以及83.8%;在不同轴承不同工况下,所提出模型的均方根误差分别降低了16.9%、18.9%、11.7%以及8.9%。