A lot of work has been focused on desig-ning and analyzing various cooperative diversity pro-tocols for wireless relay networks. To provide a uni-fied queuing analytic framework, we fonmlate an em-bedded Markov chain,...A lot of work has been focused on desig-ning and analyzing various cooperative diversity pro-tocols for wireless relay networks. To provide a uni-fied queuing analytic framework, we fonmlate an em-bedded Markov chain, which rams out to be a Quasi-Birth-and-Death (QBD) process. Using the Matrix-Ce-ometric method, we can analyze the average delay in a unified way. Theoretical analysis is validated by simu-lation results. We show that the delay performances of Amplify-and-Forward or Decode-and-Forwaxd (AF/ DF) and incremental AF/DF schemes can be analyzed in the unified way. Thus, we can always choose the best cooperative diversity scheme in different scenari-os for delay minimization.展开更多
基金This work was supported by the National Basic Research Program of China under Crant No. 2012CB316001 the National Science Foundation of China under Crants No. (:13832008, No. 03902001.
文摘A lot of work has been focused on desig-ning and analyzing various cooperative diversity pro-tocols for wireless relay networks. To provide a uni-fied queuing analytic framework, we fonmlate an em-bedded Markov chain, which rams out to be a Quasi-Birth-and-Death (QBD) process. Using the Matrix-Ce-ometric method, we can analyze the average delay in a unified way. Theoretical analysis is validated by simu-lation results. We show that the delay performances of Amplify-and-Forward or Decode-and-Forwaxd (AF/ DF) and incremental AF/DF schemes can be analyzed in the unified way. Thus, we can always choose the best cooperative diversity scheme in different scenari-os for delay minimization.