目的观察黄芩素对阿尔茨海默病(AD)大鼠发病早期认知功能和皮层、海马组织蛋白表达谱的影响,探讨其作用机制。方法实验大鼠随机分为对照组、模型组、黄芩素组,每组12只。黄芩素组大鼠予黄芩素药液灌胃,模型组和对照组大鼠予等量生理盐...目的观察黄芩素对阿尔茨海默病(AD)大鼠发病早期认知功能和皮层、海马组织蛋白表达谱的影响,探讨其作用机制。方法实验大鼠随机分为对照组、模型组、黄芩素组,每组12只。黄芩素组大鼠予黄芩素药液灌胃,模型组和对照组大鼠予等量生理盐水灌胃。灌胃体积均为2 m L,连续10 d。利用Morris水迷宫评估治疗效果,并运用双向凝胶电泳技术对脑组织蛋白进行分离,考马斯蓝染显色,应用PDQuest8.0软件对双向电泳图谱进行差异分析,通过MALDI-TOF-MS/MS和数据库查询鉴定差异明显的蛋白质点,并利用String在线分析软件对差异表达蛋白进行生物信息学分析。结果黄芩素可显著缓解β-淀粉样蛋白(Aβ)1-40导致的认知功能减退。黄芩素作用下,位于大鼠大脑皮层和海马组织的8种蛋白表达水平变化明显。质谱鉴定结果显示,差异蛋白涉及4种生物学功能,与神经传导关系最为密切,其中3种蛋白与其他蛋白存在相互作用关系。结论黄芩素对AD大鼠早期认知功能损伤的改善作用与其能够调节神经传导相关蛋白的表达相关。展开更多
We present a method to teleport multi-qubit quantum information in an easy way from a sender to a receiver via the control of many agents in a network. Only when all the agents collaborate with the quantum information...We present a method to teleport multi-qubit quantum information in an easy way from a sender to a receiver via the control of many agents in a network. Only when all the agents collaborate with the quantum information receiver can the unknown states in the sender's qubits be fully reconstructed in the receiver's qubits. In our method, agents's control parameters are obtained via quantum entanglement swapping. As the realization of the many-agent controlled teleportation is concerned, compared to the recent method [G.P. Yang, et al., Phys. Rev. A 70 (2004) 022329], our present method considerably reduces the preparation difficulty of initial states and the identification difficulty of entangled states, moreover, it does not need local Hadamard operations and it is more feasible in technology.展开更多
Security of the quantum secure direct communication protocol (i.e., the C-S QSDC protocol) recently proposed by Cao and Song [Chin. Phys. Lett. 23 (2006) 290] is analyzed in the case of considerable quantum channe...Security of the quantum secure direct communication protocol (i.e., the C-S QSDC protocol) recently proposed by Cao and Song [Chin. Phys. Lett. 23 (2006) 290] is analyzed in the case of considerable quantum channel noise. The eavesdropping scheme is presented, which reveals that the C-S QSDC protocol is not secure if the quantum bit error rate (QBER) caused by quantum channel noise is higher than 4.17%. Our eavesdropping scheme induces about 4.17% QBER for those check qubits. However, such QBER can be hidden in the counterpart induced by the noisy quantum channel if the eavesdropper Eve replaces the original noisy channel by an ideal one. Furthermore, if the QBER induced by quantum channel noise is lower than 4.17%, then in the eavesdropping scheme Eve still can eavesdrop part of the secret messages by safely attacking a fraction of the transmitted qubits. Finally, an improvement on the C-S QSDC protocol is put forward.展开更多
Based on A.K. Pati's original idea [Phys. Rev. A 61 (2000) 022308] on single-qubit-state-assisted clone, very recently Zhan has proposed two assisted quantum cloning protocols of a special class of unknown two-qubi...Based on A.K. Pati's original idea [Phys. Rev. A 61 (2000) 022308] on single-qubit-state-assisted clone, very recently Zhan has proposed two assisted quantum cloning protocols of a special class of unknown two-qubit entangled states [Phys. Lett. A 336 (2005) 317]. In this paper we further generalize Zhan's protocols such that an arbitrary unknown two-qubit entangled state can be treated.展开更多
A tripartite scheme for securely sharing an arbitrary unknown two-qutrit state is proposed, where two generalized Greenberger-Horne-Zeilinger (GHZ) states serve as the quantum channel linking the three legitimate pa...A tripartite scheme for securely sharing an arbitrary unknown two-qutrit state is proposed, where two generalized Greenberger-Horne-Zeilinger (GHZ) states serve as the quantum channel linking the three legitimate parties. The quantum information (i.e., the arbitrary unknown two-qutrit state) from the sender can be split in such a way that it can be reconstructed deterministically by any agent via a proper unitary operation provided that both agents collaborates together. Moreover, the generalization of the tripartite scheme to more-party case is also outlined.展开更多
Recently, several similar protocols [J. Opt. B 4 (2002) 380; Phys. Lett. A 316 (2003) 159; Phys. Lett. A 355 (2006) 285; Phys. Lett. A 336 (2005) 317] for remotely preparing a class of multi-qubit states (i....Recently, several similar protocols [J. Opt. B 4 (2002) 380; Phys. Lett. A 316 (2003) 159; Phys. Lett. A 355 (2006) 285; Phys. Lett. A 336 (2005) 317] for remotely preparing a class of multi-qubit states (i.e, α[0...0〉 +β[1... 1〉) were proposed, respectively. In this paper, by applying the controlled-not (CNOT) gate, a new simple protocol is proposed for remotely preparing such class of states. Compared to the previous protocols, both classical communication cost and required quantum entanglement in our protocol are remarkably reduced. Moreover, the difficulty of identifying some quantum states in our protocol is also degraded. Hence our protocol is more economical and feasible.展开更多
We propose a remote state preparation (RSP) scheme of three-particle Greenberger Horne-Zeilinger (GHZ) class states, where quantum channels are composed of two maximally entangled states. With the aid of forward c...We propose a remote state preparation (RSP) scheme of three-particle Greenberger Horne-Zeilinger (GHZ) class states, where quantum channels are composed of two maximally entangled states. With the aid of forward classical bits, the preparation of the original state can be successfully realized with the probability 1/2, the necessary classical communication cost is 0.5 bit on average. If the state to be prepared belongs to some special states, the success probability of preparation can achieve 1 after consuming one extra bit on average. We then generalize this scheme to the case that the quantum channels consist of two non-maximally entangled states.展开更多
A three-party scheme for splitting an arbitrary unknown two-qutrit state is proposed,where two non-maximally-entangled three-qutrit states are taken as the quantum channel among three parties.With the sender'shelp...A three-party scheme for splitting an arbitrary unknown two-qutrit state is proposed,where two non-maximally-entangled three-qutrit states are taken as the quantum channel among three parties.With the sender'shelp,if and only if both receivers collaborate together,they can securely share the quantum state in a probabilisticway by introducing an ancilla qutrit and performing appropriate unitary operations.The relation between the successprobability and coefficients characterizing the quantum channel is revealed.The security of the present scheme is analyzedand confirmed.Moreover,the generalization of the three-party scheme to more-party case is also sketched.展开更多
In this paper we propose a tripartite scheme for splitting an arbitrary 2-qubit quantum information by using two asymmetric W states as the quantum channel. In the schemem if the two recipients collaborate together, t...In this paper we propose a tripartite scheme for splitting an arbitrary 2-qubit quantum information by using two asymmetric W states as the quantum channel. In the schemem if the two recipients collaborate together, they can deterministically recover the quantum information by performing first a 4-qubit collective unitary operation and then two single-qubit unitary operations. In addition, since the asymmetric W states are employed as the quantum channel, the scheme is robust against decoherence.展开更多
Quantum correlations in a family of bipartite separable qubit-qutrit quantum-classical correlated states are investigated by using two popular measures,i.e.,the original quantum discord(OQD)method by Ollivier and Zure...Quantum correlations in a family of bipartite separable qubit-qutrit quantum-classical correlated states are investigated by using two popular measures,i.e.,the original quantum discord(OQD)method by Ollivier and Zurek[Phys.Rev.Lett.88(2001)017901]and the measurement-induced disturbance(MID)method by Luo[Phys.Rev.A 77(2008)022301].It is found that both of them are functions of a parameter partially characterizing the concerned states,however,quantum correlations evaluated via the convenient MID method are somewhat overestimated.展开更多
文摘目的观察黄芩素对阿尔茨海默病(AD)大鼠发病早期认知功能和皮层、海马组织蛋白表达谱的影响,探讨其作用机制。方法实验大鼠随机分为对照组、模型组、黄芩素组,每组12只。黄芩素组大鼠予黄芩素药液灌胃,模型组和对照组大鼠予等量生理盐水灌胃。灌胃体积均为2 m L,连续10 d。利用Morris水迷宫评估治疗效果,并运用双向凝胶电泳技术对脑组织蛋白进行分离,考马斯蓝染显色,应用PDQuest8.0软件对双向电泳图谱进行差异分析,通过MALDI-TOF-MS/MS和数据库查询鉴定差异明显的蛋白质点,并利用String在线分析软件对差异表达蛋白进行生物信息学分析。结果黄芩素可显著缓解β-淀粉样蛋白(Aβ)1-40导致的认知功能减退。黄芩素作用下,位于大鼠大脑皮层和海马组织的8种蛋白表达水平变化明显。质谱鉴定结果显示,差异蛋白涉及4种生物学功能,与神经传导关系最为密切,其中3种蛋白与其他蛋白存在相互作用关系。结论黄芩素对AD大鼠早期认知功能损伤的改善作用与其能够调节神经传导相关蛋白的表达相关。
文摘We present a method to teleport multi-qubit quantum information in an easy way from a sender to a receiver via the control of many agents in a network. Only when all the agents collaborate with the quantum information receiver can the unknown states in the sender's qubits be fully reconstructed in the receiver's qubits. In our method, agents's control parameters are obtained via quantum entanglement swapping. As the realization of the many-agent controlled teleportation is concerned, compared to the recent method [G.P. Yang, et al., Phys. Rev. A 70 (2004) 022329], our present method considerably reduces the preparation difficulty of initial states and the identification difficulty of entangled states, moreover, it does not need local Hadamard operations and it is more feasible in technology.
基金The project supported by the Program for New Century Excellent Talents at the University of China under Grant No.NCET-06-0554the National Natural Science Foundation of China under Grant No.60677001+3 种基金the Science Technology Fund of Anhui Province for Outstanding Youth under Grant No.06042087the Key Fund of the Ministry of Education of China under Grant No.206063the Natural Science Foundation of Guangdong Province under Grant Nos.06300345 and 7007806Natural Science Foundation of Hubei Province under Grant No.2006ABA354
文摘Security of the quantum secure direct communication protocol (i.e., the C-S QSDC protocol) recently proposed by Cao and Song [Chin. Phys. Lett. 23 (2006) 290] is analyzed in the case of considerable quantum channel noise. The eavesdropping scheme is presented, which reveals that the C-S QSDC protocol is not secure if the quantum bit error rate (QBER) caused by quantum channel noise is higher than 4.17%. Our eavesdropping scheme induces about 4.17% QBER for those check qubits. However, such QBER can be hidden in the counterpart induced by the noisy quantum channel if the eavesdropper Eve replaces the original noisy channel by an ideal one. Furthermore, if the QBER induced by quantum channel noise is lower than 4.17%, then in the eavesdropping scheme Eve still can eavesdrop part of the secret messages by safely attacking a fraction of the transmitted qubits. Finally, an improvement on the C-S QSDC protocol is put forward.
基金The project supported by National Natural Science Foundation of China under Grant No. 10304022, the Science-Technology Fund of Anhui Province for 0utstanding Youth under Grant No. 06042087, the Key Fund of the Ministry of Education of China under Grant No. 206063, Natural Science Foundation of Hubei Province of China under Grant No, 2006ABA354
文摘Based on A.K. Pati's original idea [Phys. Rev. A 61 (2000) 022308] on single-qubit-state-assisted clone, very recently Zhan has proposed two assisted quantum cloning protocols of a special class of unknown two-qubit entangled states [Phys. Lett. A 336 (2005) 317]. In this paper we further generalize Zhan's protocols such that an arbitrary unknown two-qubit entangled state can be treated.
基金The project partly supported by the Program of New Century Excellent Talents at the Universities of China under Grant No.NCET06-0554National Natural Science Foundation of China under Grant No.60677001+3 种基金the Science-Technology Fund of Anhui Province for Outstanding Youth under Grant No.06042087the Key Fund of the Ministry of Education of China under Grant No.206063the General Fund of the Educational Committee of Anhui Province under Grant No.2006KJ260Bthe Postgraduate Innovation Research Plan from Anhui University under Grant No.20073039
文摘A tripartite scheme for securely sharing an arbitrary unknown two-qutrit state is proposed, where two generalized Greenberger-Horne-Zeilinger (GHZ) states serve as the quantum channel linking the three legitimate parties. The quantum information (i.e., the arbitrary unknown two-qutrit state) from the sender can be split in such a way that it can be reconstructed deterministically by any agent via a proper unitary operation provided that both agents collaborates together. Moreover, the generalization of the tripartite scheme to more-party case is also outlined.
基金supported by the Program for New Century Excellent Talents at the University of China under Grant No.NCET-06-0554the National Natural Science Foundation of China under Grant Nos.60677001 and 10747146+3 种基金the Science-Technology Fund of Anhui Province for Outstanding Youth under Grant No.06042087the Key Fund of the Ministry of Education of China under Grant No.206063the Natural Science Foundation of Guangdong Province under Grant Nos.06300345 and 7007806Natural Science Foundation of Hubei Province under Grant No.2006ABA354
文摘Recently, several similar protocols [J. Opt. B 4 (2002) 380; Phys. Lett. A 316 (2003) 159; Phys. Lett. A 355 (2006) 285; Phys. Lett. A 336 (2005) 317] for remotely preparing a class of multi-qubit states (i.e, α[0...0〉 +β[1... 1〉) were proposed, respectively. In this paper, by applying the controlled-not (CNOT) gate, a new simple protocol is proposed for remotely preparing such class of states. Compared to the previous protocols, both classical communication cost and required quantum entanglement in our protocol are remarkably reduced. Moreover, the difficulty of identifying some quantum states in our protocol is also degraded. Hence our protocol is more economical and feasible.
基金the Program for New Century Excellent Talents at Universities of China under Grant No.NCET-06-0554the National Natural Science Foundation of China under Grant No.60677001+3 种基金the Science-Technology Fund of Auhui Province for Outstanding Youth uniter Grant No.06042087the Key Fund of the Ministry of Education of China under Grant No.206063the Natural Science Foundation of Guangdong Province under Grant Nos.06300345 and 7007806Natural Science Foundation of Hubei Province under Grant No.2006AB354
文摘We propose a remote state preparation (RSP) scheme of three-particle Greenberger Horne-Zeilinger (GHZ) class states, where quantum channels are composed of two maximally entangled states. With the aid of forward classical bits, the preparation of the original state can be successfully realized with the probability 1/2, the necessary classical communication cost is 0.5 bit on average. If the state to be prepared belongs to some special states, the success probability of preparation can achieve 1 after consuming one extra bit on average. We then generalize this scheme to the case that the quantum channels consist of two non-maximally entangled states.
基金the Program for New Century Excellent Talents at Universities of China under Grant No.NCET-06-0554National Natural Science Foundation of China under Grant Nos.60677001 and 10747146+2 种基金the Science-Technology Fund of Anhui Province for Outstanding Youth under Grant No.06042087the Key Fund of the Ministry of Education of China under Grant No.206063the Natural Science Foundation of Guangdong Province under Grant Nos.06300345 and 7007806
文摘A three-party scheme for splitting an arbitrary unknown two-qutrit state is proposed,where two non-maximally-entangled three-qutrit states are taken as the quantum channel among three parties.With the sender'shelp,if and only if both receivers collaborate together,they can securely share the quantum state in a probabilisticway by introducing an ancilla qutrit and performing appropriate unitary operations.The relation between the successprobability and coefficients characterizing the quantum channel is revealed.The security of the present scheme is analyzedand confirmed.Moreover,the generalization of the three-party scheme to more-party case is also sketched.
基金supported by Program for New Century Excellent Talents in Universities of China under Grant No.NCET-06-0554the National Natural Science Foundation of China under Grant Nos.60677001 and 10747146+3 种基金the Science-Technology Fund of Anhui Province for Outstanding Youth under Grant No.06042087the Key Fund of the Ministry of Education of China under Grant No.206063the Natural Science Foundation of Guangdong Province under Grant Nos.06300345 and 7007806the Talent Foundation of High Education of Anhui Province for Outstanding Youth under Grant No.2009SQRZ056
文摘In this paper we propose a tripartite scheme for splitting an arbitrary 2-qubit quantum information by using two asymmetric W states as the quantum channel. In the schemem if the two recipients collaborate together, they can deterministically recover the quantum information by performing first a 4-qubit collective unitary operation and then two single-qubit unitary operations. In addition, since the asymmetric W states are employed as the quantum channel, the scheme is robust against decoherence.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20103401110007the National Natural Science Foundation of China under Grant Nos 10874122,10975001,51072002 and 51272003+1 种基金the Program for Excellent Talents at the University of Guangdong Province(Guangdong Teacher Letter[1010]No 79)the 211 Project of Anhui University.
文摘Quantum correlations in a family of bipartite separable qubit-qutrit quantum-classical correlated states are investigated by using two popular measures,i.e.,the original quantum discord(OQD)method by Ollivier and Zurek[Phys.Rev.Lett.88(2001)017901]and the measurement-induced disturbance(MID)method by Luo[Phys.Rev.A 77(2008)022301].It is found that both of them are functions of a parameter partially characterizing the concerned states,however,quantum correlations evaluated via the convenient MID method are somewhat overestimated.