针对丘陵山区单边制动农用履带车辆路径跟踪精度低、控制次数多、转向偏差大等问题,本文开展不同负载条件下履带车辆路径跟踪控制研究。首先,对履带车辆的转向运动学进行理论分析,并建立履带车辆运动学模型;其次,根据履带车辆单边制动...针对丘陵山区单边制动农用履带车辆路径跟踪精度低、控制次数多、转向偏差大等问题,本文开展不同负载条件下履带车辆路径跟踪控制研究。首先,对履带车辆的转向运动学进行理论分析,并建立履带车辆运动学模型;其次,根据履带车辆单边制动转向特性,提出一种基于瞬时旋转中心(Instantaneous center of rotation, ICR)的大角度转向控制算法,该算法能够根据规划路径的转向点位置与履带车辆转向瞬心,规划出最优的转向目标点,并控制履带车辆在该转向目标点一次性转向到所需航向,与此同时,完成转向控制器设计;最后,开展履带车辆在3种不同负载条件下的仿真试验与田间试验。仿真结果表明,大角度转向控制算法产生的跟踪路径平均误差面积与平均转向控制次数分别降低68.95%、68.77%;田间试验结果表明,大角度转向控制算法产生的跟踪路径平均横向偏差均值、平均转向控制次数与转向点处平均最小偏差分别减少57.27%、33.93%、62.29%,且路径跟踪效果更优,验证了大角度转向控制算法的有效性。试验结果满足履带车辆路径跟踪的要求,为实现农用履带车辆的路径跟踪提供理论基础与参考。展开更多
[目的]获取三七Panax notoginseng种植土壤与触土部件相互作用的离散元仿真模型参数。[方法]基于Hertz-Mindlin with JKR接触模型建立三七种植土壤离散元模型并进行参数标定。首先,以土壤颗粒间及土壤-65Mn钢板间的JKR表面能、恢复系数...[目的]获取三七Panax notoginseng种植土壤与触土部件相互作用的离散元仿真模型参数。[方法]基于Hertz-Mindlin with JKR接触模型建立三七种植土壤离散元模型并进行参数标定。首先,以土壤颗粒间及土壤-65Mn钢板间的JKR表面能、恢复系数、静摩擦系数、动摩擦系数为试验因素,以土壤堆积角、土壤在65Mn板上的滚动距离为评价指标。其次,采用基于Box-Behnken的响应面优化方法建立土壤堆积角、滚动距离回归模型。[结果]对回归模型进行寻优,得到仿真标定的土壤颗粒间JKR表面能、恢复系数、静摩擦系数和动摩擦系数的最优值分别为14.88 J/m2、0.53、0.46和0.150,标定的土壤-65Mn板间JKR表面能、恢复系数、静摩擦系数和动摩擦系数的最优值分别为7.02 J/m2、0.59、0.57和0.058。通过三七挖掘铲仿真试验与土槽试验对比分析得到,挖掘铲受X、Y轴方向平均阻力仿真值与实测值相对误差分别为9.91%、8.78%。[结论]标定的离散元土壤模型参数准确度高,研究可为三七收获机触土部件及装备优化提供理论参考。展开更多
文摘针对丘陵山区单边制动农用履带车辆路径跟踪精度低、控制次数多、转向偏差大等问题,本文开展不同负载条件下履带车辆路径跟踪控制研究。首先,对履带车辆的转向运动学进行理论分析,并建立履带车辆运动学模型;其次,根据履带车辆单边制动转向特性,提出一种基于瞬时旋转中心(Instantaneous center of rotation, ICR)的大角度转向控制算法,该算法能够根据规划路径的转向点位置与履带车辆转向瞬心,规划出最优的转向目标点,并控制履带车辆在该转向目标点一次性转向到所需航向,与此同时,完成转向控制器设计;最后,开展履带车辆在3种不同负载条件下的仿真试验与田间试验。仿真结果表明,大角度转向控制算法产生的跟踪路径平均误差面积与平均转向控制次数分别降低68.95%、68.77%;田间试验结果表明,大角度转向控制算法产生的跟踪路径平均横向偏差均值、平均转向控制次数与转向点处平均最小偏差分别减少57.27%、33.93%、62.29%,且路径跟踪效果更优,验证了大角度转向控制算法的有效性。试验结果满足履带车辆路径跟踪的要求,为实现农用履带车辆的路径跟踪提供理论基础与参考。
文摘针对室内全球导航卫星系统(Global navigation satellite system,GNSS)信号受遮挡时,农用车辆协同定位精度低、稳定性差、信号丢包等问题,本文开展面向超宽带(Ultra-wideband,UWB)调频技术的室内外农用车辆协同定位算法研究。首先,搭建三基站多边测距定位模型,实现主基站绝对位置标定以及辅助基站绝对位置坐标的变换求解;其次,提出全质心加权最小二乘的高速双边双向(Weighted least squares high double sided two-way ranging,WLS-HDS-TWR)农机协同定位算法,基于泰勒级数展开的WLS估计算法,求解主车位置。同时,提出面向室内环境的多状态基站组合的UWB定位模块布设模式,并验证其可行性;通过飞行时间法(Time of flight,TOF)获取主从车距离信息,融合GNSS标定位置信息、主车坐标信息以及测距信息,实现主从车协同定位。最后,基于Prescan/Simulink搭建联合仿真平台,验证提出算法的可靠性;通过农用履带车辆开展室内及室外协同定位实车试验,试验结果表明:全质心WLS-HDS-TWR协同定位算法可有效解决室内GNSS信号缺失问题,室内环境下,定位精度较HDS-TWR及全质心LS-HDS-TWR算法分别提高26.98%和22.03%,满足智能农机协同定位作业需求。