It has been shown that Boussinesq type equations, which include the lowest order effects of nonlinearity and frequency dispersion, can provide an accurate description of wave evolution in coastal regions. But differen...It has been shown that Boussinesq type equations, which include the lowest order effects of nonlinearity and frequency dispersion, can provide an accurate description of wave evolution in coastal regions. But different linear dispersion characteristics of the equation can be obtained by different integrating method. In this paper, a new form of the Boussinesq equation is derived by use of two different layer horizontal velocity variables instead of the commonly used depth-averaged velocity or an arbitrary layer velocity. This significantly improves the linear dispersion properties of the Boussinesq equation and enables it to be applied to a wider range of water depth.展开更多
A nonlinear numerical model has been set up by use of Boussinesq Equation with finite difference method, and has been applied to the simulation of the abnormal change of wave height induced by excavated waterway. Nume...A nonlinear numerical model has been set up by use of Boussinesq Equation with finite difference method, and has been applied to the simulation of the abnormal change of wave height induced by excavated waterway. Numerical results demonstrate that the abnormal change of wave height is due to the adding of the reflected wave height induced by excavated waterway to the incident wave height. Because the angle between the incident wave and the axis of the waterway is smaller than the critical angle, the reflected wave produced by the waterway may propagate to the breakwater and may be added with the incident wave, then the abnormal change of wave height before the breakwater may be caused. So the wave reflection caused by the change of water depth cannot be neglected.展开更多
This paper describes the structural elucidation of a new insecticiaal neoclerodane diterpene Ajagamarin L-2 from Ajuga nipponensis,based on spectral data and X-ray diffraction analysis as 4,18-epoxy-6 alpha -hydroxy-1...This paper describes the structural elucidation of a new insecticiaal neoclerodane diterpene Ajagamarin L-2 from Ajuga nipponensis,based on spectral data and X-ray diffraction analysis as 4,18-epoxy-6 alpha -hydroxy-19-tigloyloxy-neo-clerod-13 (14) -en-15, 16-olide.展开更多
文摘It has been shown that Boussinesq type equations, which include the lowest order effects of nonlinearity and frequency dispersion, can provide an accurate description of wave evolution in coastal regions. But different linear dispersion characteristics of the equation can be obtained by different integrating method. In this paper, a new form of the Boussinesq equation is derived by use of two different layer horizontal velocity variables instead of the commonly used depth-averaged velocity or an arbitrary layer velocity. This significantly improves the linear dispersion properties of the Boussinesq equation and enables it to be applied to a wider range of water depth.
文摘A nonlinear numerical model has been set up by use of Boussinesq Equation with finite difference method, and has been applied to the simulation of the abnormal change of wave height induced by excavated waterway. Numerical results demonstrate that the abnormal change of wave height is due to the adding of the reflected wave height induced by excavated waterway to the incident wave height. Because the angle between the incident wave and the axis of the waterway is smaller than the critical angle, the reflected wave produced by the waterway may propagate to the breakwater and may be added with the incident wave, then the abnormal change of wave height before the breakwater may be caused. So the wave reflection caused by the change of water depth cannot be neglected.
文摘This paper describes the structural elucidation of a new insecticiaal neoclerodane diterpene Ajagamarin L-2 from Ajuga nipponensis,based on spectral data and X-ray diffraction analysis as 4,18-epoxy-6 alpha -hydroxy-19-tigloyloxy-neo-clerod-13 (14) -en-15, 16-olide.