To help optimize the spacecraft design and reduce the risk of spacecraft mission failure, a new approach to assess the survivability of spacecraft in orbit is presented here, including the following three steps: 1)Sen...To help optimize the spacecraft design and reduce the risk of spacecraft mission failure, a new approach to assess the survivability of spacecraft in orbit is presented here, including the following three steps: 1)Sensitivity Analysis of spacecraft. A new sensitivity analysis method, a ray method based on virtual outer wall, is presented here. Using rays to simulate the debris cloud can effectively address the component shadowing issues. 2) Component Vulnerability analysis of spacecraft. A function "Component functional reduction degree-Component physical damage degree" is provided here to clearly describe the component functional reduction. 3) System-level Survivability Assessment of spacecraft. A new method based on expert knowledge reasoning, instead of traditional artificial failure tree method, is presented here to greatly improve the efficiency and accuracy of calculation.展开更多
文摘To help optimize the spacecraft design and reduce the risk of spacecraft mission failure, a new approach to assess the survivability of spacecraft in orbit is presented here, including the following three steps: 1)Sensitivity Analysis of spacecraft. A new sensitivity analysis method, a ray method based on virtual outer wall, is presented here. Using rays to simulate the debris cloud can effectively address the component shadowing issues. 2) Component Vulnerability analysis of spacecraft. A function "Component functional reduction degree-Component physical damage degree" is provided here to clearly describe the component functional reduction. 3) System-level Survivability Assessment of spacecraft. A new method based on expert knowledge reasoning, instead of traditional artificial failure tree method, is presented here to greatly improve the efficiency and accuracy of calculation.