Surface roughness is an important factor that affects the wetting of molten metal on ceramics.The effect of surface roughness of the alumina substrate on the contact angle,contact diameter,drop height and surface tens...Surface roughness is an important factor that affects the wetting of molten metal on ceramics.The effect of surface roughness of the alumina substrate on the contact angle,contact diameter,drop height and surface tension of molten lead was investigated in the temperature range of 923-1123 K.The microstructure of the lead/substrate interface was observed by SEM.The surface free energy of alumina substrates was calculated by the geometrical average method.When the surface roughness of the substrate increased from 0.092 to 2.23μm,the surface free energy increased gradually,ranging from 13.356 to 39.998 mJ/m^(2).The contact diameter of lead droplets decreased from 9.111 to 7.19 mm.The lead drop height increased from 3.41 to 3.85 mm.The contact angle increased from 113.05°to 137.15°.Moreover,the surface depression of the alumina substrate was filled with lead,and no obvious change was observed.The results demonstrated that the wetting of lead drop on alumina substrates was consistent with the Wenzel state.展开更多
The reactive spreading processes of Sn–17Bi–0.5Cu melt alloy on Cu substrate were studied by sessile drop method in the temperature range of 523–673 K.Dynamic contact angles between the solder and Cu substrate at d...The reactive spreading processes of Sn–17Bi–0.5Cu melt alloy on Cu substrate were studied by sessile drop method in the temperature range of 523–673 K.Dynamic contact angles between the solder and Cu substrate at different times were recorded with high-resolution CCD digital video.The smallest contact angle was observed at623 and 673 K.Ultimate spreading radius does not increase monotonously with the temperature increasing.These can be attributed to the strong dissolution of Cu substrate into the liquid solder,which hinders the solder from spreading.Triple line area configuration of the Sn–17Bi–0.5Cu/Cu system was discussed by the description of the equilibrium state.The calculated results based on experiments of the tension balances along each of the three interfaces show good agreement with theoretical analysis.Intermetallic compounds at the Sn–17Bi–0.5Cu/Cu interface are identified as Cu6Sn5adjacent to the solder and Cu3Sn adjacent to the Cu substrate,respectively.These results are of practical interest for composite lead-free solders’preparations and joining of Sn–17Bi–0.5Cu to Cu substrate.展开更多
Slag movement on SiO2-based prism refractories in different slag systems was observed. The cross section shape evolution mechanism was discussed. Two types of shape evolution appear. For PbO-SiO2 slag whose surface te...Slag movement on SiO2-based prism refractories in different slag systems was observed. The cross section shape evolution mechanism was discussed. Two types of shape evolution appear. For PbO-SiO2 slag whose surface tension improves with SiO2 concentration, slag film flows up along four edges under axial Marangoni shear force and wettability. Then, it flows down along four lateral faces under gravity. Corrosion rate at edges is larger than that on lateral faces due to different SiO2 solubilities of ascending and descending flow. Prism cross section shape changes from square to round. For FetO-SiO2 slag whose surface tension reduces with the increase of SiO2 concentration, slag film flows up under the inflence of wettability. Then, it flows down under Marangoni shear force and gravity. Compared to four edges, slag is mainly up and down on four lateral faces due to larger surface tension and size. So, prism cross section shape keeps square.展开更多
The sodium smelting of vanadium-titanium magnetite can achieve the comprehensive utilization of Fe,V,and Ti.However,the generation of alkaline slag during this process may cause damage to refractory materials.The wett...The sodium smelting of vanadium-titanium magnetite can achieve the comprehensive utilization of Fe,V,and Ti.However,the generation of alkaline slag during this process may cause damage to refractory materials.The wettability and corrosion behavior of alkaline slag on three types of refractory(MgO-C,SiC,and high alumina refractory)substrates were investigated at temperatures up to 1200℃.The effects of duration on the wettability of molten slag on SiC substrates were also investigated.Results showed that the high alumina refractory exhibited better wettability with the molten slag than the others,and thus,it is easier to be corroded.The results of scanning electron microscopy coupled with energy dispersive spectroscopy showed that MgO-C and high alumina refractory substrates were severely eroded.There was a visible and regular interfacial reaction layer between the slag and SiC refractory substrate,which was produced by the redox reaction between the metal oxides in the slag and the SiC refractory substrate.With the increase in holding time,the interface layer expands and silico-ferrite phases are generated at the interface.The redox reaction between Fe_(2)O_(3) and SiC substrate is the main reason for the corrosion.By comparing the differences in wettability and corrosion behavior between the alkaline slag from sodium smelting of vanadium-titanium magnetite and MgO-C,SiC and high alumina refractories,it is concluded that SiC refractory has good corrosion resistance to the slag.Iron oxides in the slag accelerate the oxidation rate of SiC refractory.展开更多
During the operation of a coke dry quenching system of coking plant, wear-proofing cover of the boiler was seriously eroded, and even the ceiling tube of the boiler was worn and torn. Thus, attentions were paid to the...During the operation of a coke dry quenching system of coking plant, wear-proofing cover of the boiler was seriously eroded, and even the ceiling tube of the boiler was worn and torn. Thus, attentions were paid to the research, development and application of the wear-resistant coating spraying technique for wear-proofing cover of the coke dry quenching furnace. The Cr3C2–NiCr coatings for wear-proofing cover were fabricated via supersonic arc spraying process, and the residual coating of wear-proofing cover would be sampled for being analyzed after two years. The coating presents a dense microstructure with few pores and micro-cracks (the porosity is 4.65%). After thermal spraying of the wear-proofing cover, the hardness and the wear resistance of the surface are improved. The remaining coating is continuous and compact, with an average thickness of about 147μm. Transverse micro-cracks parallel to the spreading direction of the coating surface are displayed on different areas of the coating, which demonstrates its serious erosion wear effect. The main chemical component of white zone is Fe–18Cr–Ni. The Cr level of light gray phase is about 77.57 wt.% and the O level is 22.43 wt.%. And the main chemical components of dark gray phase are C, O, Al, Si and Ca. X-ray diffraction patterns were adopted to implement phase analysis on the surface of coating sample, which indicated that the coating was composed of a large amount of Cr3O2 and a small amount of metal Cr.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U1738101,51974022)Fundamental Research Funds for the Central Universities,China(No.FRF-MP-20-17)。
基金financial supports from the National Natural Science Foundation of China(Nos.51974022,U1738101)Fundamental Research Funds for the Central Universities,China(No.FRF-MP-20-17)。
文摘Surface roughness is an important factor that affects the wetting of molten metal on ceramics.The effect of surface roughness of the alumina substrate on the contact angle,contact diameter,drop height and surface tension of molten lead was investigated in the temperature range of 923-1123 K.The microstructure of the lead/substrate interface was observed by SEM.The surface free energy of alumina substrates was calculated by the geometrical average method.When the surface roughness of the substrate increased from 0.092 to 2.23μm,the surface free energy increased gradually,ranging from 13.356 to 39.998 mJ/m^(2).The contact diameter of lead droplets decreased from 9.111 to 7.19 mm.The lead drop height increased from 3.41 to 3.85 mm.The contact angle increased from 113.05°to 137.15°.Moreover,the surface depression of the alumina substrate was filled with lead,and no obvious change was observed.The results demonstrated that the wetting of lead drop on alumina substrates was consistent with the Wenzel state.
基金supported by the National Natural Science Foundation of China (No.51174008)
文摘The reactive spreading processes of Sn–17Bi–0.5Cu melt alloy on Cu substrate were studied by sessile drop method in the temperature range of 523–673 K.Dynamic contact angles between the solder and Cu substrate at different times were recorded with high-resolution CCD digital video.The smallest contact angle was observed at623 and 673 K.Ultimate spreading radius does not increase monotonously with the temperature increasing.These can be attributed to the strong dissolution of Cu substrate into the liquid solder,which hinders the solder from spreading.Triple line area configuration of the Sn–17Bi–0.5Cu/Cu system was discussed by the description of the equilibrium state.The calculated results based on experiments of the tension balances along each of the three interfaces show good agreement with theoretical analysis.Intermetallic compounds at the Sn–17Bi–0.5Cu/Cu interface are identified as Cu6Sn5adjacent to the solder and Cu3Sn adjacent to the Cu substrate,respectively.These results are of practical interest for composite lead-free solders’preparations and joining of Sn–17Bi–0.5Cu to Cu substrate.
基金Projects(U1738101,51804023)supported by the National Natural Science Foundation of ChinaProjects(FRF-TP-18-007A1,FRF-MP-18-007)supported by Fundamental Research Funds for the Central Universities,ChinaProject(2019M650489)supported by China Postdoctoral Science Foundation
文摘Slag movement on SiO2-based prism refractories in different slag systems was observed. The cross section shape evolution mechanism was discussed. Two types of shape evolution appear. For PbO-SiO2 slag whose surface tension improves with SiO2 concentration, slag film flows up along four edges under axial Marangoni shear force and wettability. Then, it flows down along four lateral faces under gravity. Corrosion rate at edges is larger than that on lateral faces due to different SiO2 solubilities of ascending and descending flow. Prism cross section shape changes from square to round. For FetO-SiO2 slag whose surface tension reduces with the increase of SiO2 concentration, slag film flows up under the inflence of wettability. Then, it flows down under Marangoni shear force and gravity. Compared to four edges, slag is mainly up and down on four lateral faces due to larger surface tension and size. So, prism cross section shape keeps square.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDC04010100)National Key Research and Development Program of China(Grant No.2018YFC1900500)+1 种基金the Special Project for Transformation of Major Technological Achievements in Hebei Province(Grant No.19044012Z)the Science and Technology Program of Hengshui(Grant No.2020016004B).
文摘The sodium smelting of vanadium-titanium magnetite can achieve the comprehensive utilization of Fe,V,and Ti.However,the generation of alkaline slag during this process may cause damage to refractory materials.The wettability and corrosion behavior of alkaline slag on three types of refractory(MgO-C,SiC,and high alumina refractory)substrates were investigated at temperatures up to 1200℃.The effects of duration on the wettability of molten slag on SiC substrates were also investigated.Results showed that the high alumina refractory exhibited better wettability with the molten slag than the others,and thus,it is easier to be corroded.The results of scanning electron microscopy coupled with energy dispersive spectroscopy showed that MgO-C and high alumina refractory substrates were severely eroded.There was a visible and regular interfacial reaction layer between the slag and SiC refractory substrate,which was produced by the redox reaction between the metal oxides in the slag and the SiC refractory substrate.With the increase in holding time,the interface layer expands and silico-ferrite phases are generated at the interface.The redox reaction between Fe_(2)O_(3) and SiC substrate is the main reason for the corrosion.By comparing the differences in wettability and corrosion behavior between the alkaline slag from sodium smelting of vanadium-titanium magnetite and MgO-C,SiC and high alumina refractories,it is concluded that SiC refractory has good corrosion resistance to the slag.Iron oxides in the slag accelerate the oxidation rate of SiC refractory.
基金the National Natural Science Foundation of China(Grant Nos.U1560101 and U1738I01)the National Key Research and Development Program of China(2016YFC0209302).
文摘During the operation of a coke dry quenching system of coking plant, wear-proofing cover of the boiler was seriously eroded, and even the ceiling tube of the boiler was worn and torn. Thus, attentions were paid to the research, development and application of the wear-resistant coating spraying technique for wear-proofing cover of the coke dry quenching furnace. The Cr3C2–NiCr coatings for wear-proofing cover were fabricated via supersonic arc spraying process, and the residual coating of wear-proofing cover would be sampled for being analyzed after two years. The coating presents a dense microstructure with few pores and micro-cracks (the porosity is 4.65%). After thermal spraying of the wear-proofing cover, the hardness and the wear resistance of the surface are improved. The remaining coating is continuous and compact, with an average thickness of about 147μm. Transverse micro-cracks parallel to the spreading direction of the coating surface are displayed on different areas of the coating, which demonstrates its serious erosion wear effect. The main chemical component of white zone is Fe–18Cr–Ni. The Cr level of light gray phase is about 77.57 wt.% and the O level is 22.43 wt.%. And the main chemical components of dark gray phase are C, O, Al, Si and Ca. X-ray diffraction patterns were adopted to implement phase analysis on the surface of coating sample, which indicated that the coating was composed of a large amount of Cr3O2 and a small amount of metal Cr.