Earthworm manure, the by-product obtained from the disposing of biowastes by earthworm breeding, is largely produced and employed as a feedstock for biochar preparation through pyrolysis. For repairing acidic soil or ...Earthworm manure, the by-product obtained from the disposing of biowastes by earthworm breeding, is largely produced and employed as a feedstock for biochar preparation through pyrolysis. For repairing acidic soil or acidic electroplating effluent, biochar physicochemical properties would suffer from some changes like an acidic washing process, which hence affected its application functions. Pristine biochar (UBC) from pyrolysis of earthworm manure at 700℃ and biochar treated by HCI (WBC) were comparatively investigated regarding their physicochemical properties, adsorption capability and adsorption mechanism of Cu2+ and Cd2+ from aqueous solution to explore the immobilization characteristics of biochar in acidic environment. After HCI treatment, the soluble ash content and phenolic-OH in the WBC sample was notably decreased against the increase of the carboxyl C=O, aromatic C=C and Si-O-Si, compared to that of UBC. All adsorption processes can be well described by Langmuir isotherm model. The calculated maximum adsorption capacity of Cu2+ and Cd2+ adsorption on UBC were 36.56 and 29.31 mg/g, respectively, which were higher than that of WBC (8.64 and 12.81 rag/g, respectively), indicating that HCI treatment significantly decreased biochar adsorption ability. Mechanism analysis revealed that alkali and alkaline earth metallic, salts (carbonates, phosphates and silicates), and surface functional groups were responsible for UBC adsorption, corresponding to ion exchange, precipitation and complexation, respectively. However, ion exchange made little contributions to WBC adsorption due to the great loss of soluble ash content. WBC adsorption was mainly attributed to the abundant exposure of silicates and surface functional groups (carboxyl C=O and aromatic C=C).展开更多
The activation and functionalization of C-F bonds under mild conditions can serve as an important tool for organic syntheses including the modification of pharmaceuticals and agrochemicals and the synthesis of value-a...The activation and functionalization of C-F bonds under mild conditions can serve as an important tool for organic syntheses including the modification of pharmaceuticals and agrochemicals and the synthesis of value-added chemicals.However,owing to their high energy and low activity,C-F bonds are difficult to activate.展开更多
基金supported by the National Natural Science Foundation of China(No.51476034)the National Basic Research Program(973)of China(No.2012CB215306)supported by“Program for Changjiang Scholars and Innovative Research Team in University”from the Ministry and Education of China(No.IRT13083)
文摘Earthworm manure, the by-product obtained from the disposing of biowastes by earthworm breeding, is largely produced and employed as a feedstock for biochar preparation through pyrolysis. For repairing acidic soil or acidic electroplating effluent, biochar physicochemical properties would suffer from some changes like an acidic washing process, which hence affected its application functions. Pristine biochar (UBC) from pyrolysis of earthworm manure at 700℃ and biochar treated by HCI (WBC) were comparatively investigated regarding their physicochemical properties, adsorption capability and adsorption mechanism of Cu2+ and Cd2+ from aqueous solution to explore the immobilization characteristics of biochar in acidic environment. After HCI treatment, the soluble ash content and phenolic-OH in the WBC sample was notably decreased against the increase of the carboxyl C=O, aromatic C=C and Si-O-Si, compared to that of UBC. All adsorption processes can be well described by Langmuir isotherm model. The calculated maximum adsorption capacity of Cu2+ and Cd2+ adsorption on UBC were 36.56 and 29.31 mg/g, respectively, which were higher than that of WBC (8.64 and 12.81 rag/g, respectively), indicating that HCI treatment significantly decreased biochar adsorption ability. Mechanism analysis revealed that alkali and alkaline earth metallic, salts (carbonates, phosphates and silicates), and surface functional groups were responsible for UBC adsorption, corresponding to ion exchange, precipitation and complexation, respectively. However, ion exchange made little contributions to WBC adsorption due to the great loss of soluble ash content. WBC adsorption was mainly attributed to the abundant exposure of silicates and surface functional groups (carboxyl C=O and aromatic C=C).
基金We acknowledge financial support from the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJB150020)the construction project of the Key Laboratory of State Ethnic Affairs Commission([2020]No.91 of DDA office).Special thanks to Chen Hong,Jiangsu College of Tourism,for polishing the language.
文摘The activation and functionalization of C-F bonds under mild conditions can serve as an important tool for organic syntheses including the modification of pharmaceuticals and agrochemicals and the synthesis of value-added chemicals.However,owing to their high energy and low activity,C-F bonds are difficult to activate.