期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ligand engineering of colloid quantum dots and their application in all-inorganic tandem solar cells 被引量:3
1
作者 Fen Qiao Yi Xie +1 位作者 zhankun weng Huaqiang Chu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期230-239,共10页
How to effectively utilize the energy of the broad spectrum of sunlight is one of the basic problems in the research of tandem solar cells. Due to their size effect, quantum confinement effect and coupling effect, col... How to effectively utilize the energy of the broad spectrum of sunlight is one of the basic problems in the research of tandem solar cells. Due to their size effect, quantum confinement effect and coupling effect, colloidal quantum dots(QDs) exhibit new physical properties that bulk materials don’t possess.CdX(X = Se, S, etc.) and Pb X(X = Se, S, etc.) QDs prepared by hot-injection methods have been widely studied in the areas of photovolitaic devices. However, the surfactants surrounding QDs seriously hinder the charge transport of QDs based solar cells. Therefore, how to fabricate high-performance tandem solar cells via ligands engineering has become a major challenge. In this paper, the latest progress of colloidal QDs in the research of all-inorganic tandem solar cells was summarized. Firstly, the improvement of QDs surface ligands and the optimization of ligands engineering were discussed, and the control of the physical properties of QDs films were realized. From the aspects of colloidal QDs, ligand engineering, and solar cell preparation, the future development direction of colloidal QDs solar cells was proposed, providing technical guidances for the preparation of low-cost and high-efficiency nanocrystalline solar cells. 展开更多
关键词 Hot-injection method Colloidal quantum dots Ligand engineering Tandem solar cell
下载PDF
Magnetic Ganoderma Lucidum Spores(mGLS):A Novel Regulatable Targeted Drug Delivery System
2
作者 Bin Han zhankun weng +8 位作者 Yuhan Wu Xin Zhao Jingmei Li Qinhan Zhang Kaige Qu Bojian Liang Fenguo Zhou Guixia Liu Zuobin Wang 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第4期915-926,共12页
In the past decades,many materials have been studied as carriers for targeted drug delivery.However,there is a need for utilizable and selective carrier materials with few side effects.Here,the magnetic Ganoderma Luci... In the past decades,many materials have been studied as carriers for targeted drug delivery.However,there is a need for utilizable and selective carrier materials with few side effects.Here,the magnetic Ganoderma Lucidum Spores(mGLS)as a highly efficient targeted drug delivery carrier were explored.Then the regulatable targeted drug delivery system was verified by loading and releasing of the 5-Fluorouracil(5-FU).The results showed that the maximum of the loaded 5-FU reached 250.23 mg·g^(−1)in the mGLS.The cumulative release of the 5-FU for the drug delivery system could reach 80.11%and 67.14%in the PBS and HCl after 48 h,respectively.In addition,this system showed the good pharmacokinetic properties in vivo.After 12 h,the blood concentration in the 5-FU@mGLS group kept at 5.3µg·mL^(−1)and was four times higher than that in the 5-FU group.In summary,the GLS as a natural microscale core-shell structures appears the striking application in carrier material for oral drug delivery. 展开更多
关键词 Magnetic Ganoderma Lucidum Spores(mGLS) sustained release 5-FU drug delivery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部