Dynamic imaging modes are increasingly crucial for agile satellites to perform complicated Earth observation tasks.In this study,a direct guidance algorithm is developed to calculate the reference attitude and velocit...Dynamic imaging modes are increasingly crucial for agile satellites to perform complicated Earth observation tasks.In this study,a direct guidance algorithm is developed to calculate the reference attitude and velocity for dynamic imaging mode from target geolocation information while considering the constraints on both the satellite camera boresight axis and the image motion vector.The two slew angles are determined directly,and no rotation around the boresight or reference vector is required.The proposed approach employs a direct solution instead of the iterative process to obtain the reference attitude,which releases the onboard control system from the intensive computational load.To illustrate the performance of the proposed guidance algorithms,numerical simulation results are presented.展开更多
基金sponsored by the Shanghai Sailing Program 17YF1408300 and 17YF1408400the National Natural Science Foundation of China under Grant Nos.U20B2054 and U20B2056.
文摘Dynamic imaging modes are increasingly crucial for agile satellites to perform complicated Earth observation tasks.In this study,a direct guidance algorithm is developed to calculate the reference attitude and velocity for dynamic imaging mode from target geolocation information while considering the constraints on both the satellite camera boresight axis and the image motion vector.The two slew angles are determined directly,and no rotation around the boresight or reference vector is required.The proposed approach employs a direct solution instead of the iterative process to obtain the reference attitude,which releases the onboard control system from the intensive computational load.To illustrate the performance of the proposed guidance algorithms,numerical simulation results are presented.