This paper aims to investigate the measurement uncertainty of blade surface by coordinates measuring machines (CMMs) in different sampling modes.Two different sampling methods for the blade surface, which are the para...This paper aims to investigate the measurement uncertainty of blade surface by coordinates measuring machines (CMMs) in different sampling modes.Two different sampling methods for the blade surface, which are the parallel mode and the rotation mode, are studied to examine their measurement uncertainty.The fundamental principles and operational processes of the two modes are presented and discussed.The measurements were performed on a twisted-face blade, and data processing was also conducted to fit the cross-section profile both of the base surface and back surface separately.Then the measurement uncertainties of two sampling methods were evaluated on different parts of the blade surface in terms of the surface profile’s curvature and twist rate.It is found that the measurement of blade surface by CMMs shows much uncertainty for both of the sampling modes because of the complexity of the blade surface.The back surface’s measurement uncertainty is larger than that of the base surface.The measurement uncertainty of cross-section profiles on the top blade surface is larger than that of the bottom blade surface.In addition, the difference between the measurement uncertainties of two sampling methods is small, especially for the base blade surface.The research means that both sampling methods can be a practical application choice for the measurement of blade surface by CMMs.展开更多
Bulk flow model with perturbation simplification has been used to calculate rotordynamic coefficients in annular seals which have significant influences on the dynamic behavior of rotors in turbomachinery. In this wor...Bulk flow model with perturbation simplification has been used to calculate rotordynamic coefficients in annular seals which have significant influences on the dynamic behavior of rotors in turbomachinery. In this work, a transient bulk flow model with arbitrary rotor motion is developed, and the boundary conditions and friction factor in the model are calibrated with steady Computational Fluid Dynamics(CFD) analysis. The numerical solution scheme is developed based on the finite element method to obtain the transient reaction force in the seal clearance. With a periodic circular rotor orbit, the transient forces at multiple whirling frequencies are used to evaluate the rotordynamic coefficients. The leakage flowrate of CFD analysis has good agreement with experimental results and the calibrated parameters in bulk flow model are dependent on operating conditions. Although CFD calibration improves the accuracy of the perturbed bulk flow model, the direct damping is overestimated and the cross-coupled damping is underestimated. Compared with the perturbed model, the predictions of the transient bulk flow model are more agreeable with the experiment.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.11572098)
文摘This paper aims to investigate the measurement uncertainty of blade surface by coordinates measuring machines (CMMs) in different sampling modes.Two different sampling methods for the blade surface, which are the parallel mode and the rotation mode, are studied to examine their measurement uncertainty.The fundamental principles and operational processes of the two modes are presented and discussed.The measurements were performed on a twisted-face blade, and data processing was also conducted to fit the cross-section profile both of the base surface and back surface separately.Then the measurement uncertainties of two sampling methods were evaluated on different parts of the blade surface in terms of the surface profile’s curvature and twist rate.It is found that the measurement of blade surface by CMMs shows much uncertainty for both of the sampling modes because of the complexity of the blade surface.The back surface’s measurement uncertainty is larger than that of the base surface.The measurement uncertainty of cross-section profiles on the top blade surface is larger than that of the bottom blade surface.In addition, the difference between the measurement uncertainties of two sampling methods is small, especially for the base blade surface.The research means that both sampling methods can be a practical application choice for the measurement of blade surface by CMMs.
基金supported by the National Natural Science Foundation of China(No.11176010)
文摘Bulk flow model with perturbation simplification has been used to calculate rotordynamic coefficients in annular seals which have significant influences on the dynamic behavior of rotors in turbomachinery. In this work, a transient bulk flow model with arbitrary rotor motion is developed, and the boundary conditions and friction factor in the model are calibrated with steady Computational Fluid Dynamics(CFD) analysis. The numerical solution scheme is developed based on the finite element method to obtain the transient reaction force in the seal clearance. With a periodic circular rotor orbit, the transient forces at multiple whirling frequencies are used to evaluate the rotordynamic coefficients. The leakage flowrate of CFD analysis has good agreement with experimental results and the calibrated parameters in bulk flow model are dependent on operating conditions. Although CFD calibration improves the accuracy of the perturbed bulk flow model, the direct damping is overestimated and the cross-coupled damping is underestimated. Compared with the perturbed model, the predictions of the transient bulk flow model are more agreeable with the experiment.