期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preparation of high-quality resistant dextrin through pyrodextrin by a multienzyme complex 被引量:2
1
作者 zhanzhi liu Jun liu +2 位作者 Liqiong Ren Jing Wu Sheng Chen 《Food Bioscience》 SCIE 2022年第3期986-991,共6页
As a soluble food raw material with a low calorie content,resistant dextrin (RD) has broad application prospects in the food industry.Branching enzymes (BEs),as a key enzyme for RD preparation,can break the α-1,4 gly... As a soluble food raw material with a low calorie content,resistant dextrin (RD) has broad application prospects in the food industry.Branching enzymes (BEs),as a key enzyme for RD preparation,can break the α-1,4 glycosidic bonds of donor chains and reconstruct the cleaved chains to acceptor chains through the α-1,6 glycosidic bonds.BEs with high transglucosidic activity toward amylopectin and short-chain substrates are urgently needed to increase the quality of RD.Herein,BE derived from Thermuobifida fusca (TfBE) was mined and characterized.The optimal temperature and pH of the TfBE were 40 ℃ and 6.5,respectively.A total of 1500 U/g substrate TfBE reacted with 20% (w/v) pyrodextrin for 12 h,the ratio of α-1,4 to α-1,6 glycosidic bonds was changed from 3.52:1 to 2.33:1,and the content of enzyme-resistant components notably increased from 44.0% to 53.8%.Furthermore,to make full use of receptor chains and small molecular sugars in the reaction system,a multienzyme complex of TfBE with T.fusca α-cyclodextrin glucosyltransferase (TfCGTase),TfBE with TfCGTase and Aspergillus nidulans α-glucosidase (AnGS) was used to further increase the enzyme resistance of RD from 44.0% to 65.3% and 70.6%,respectively.The developed multienzyme complex method could effectively contribute to improving the production quality and efficiency of RD preparation. 展开更多
关键词 Pyrodextrin Resistant dextrin Branching enzyme α-Cyclodextrin glucosyltransferase Α-GLUCOSIDASE Multienzyme complex
原文传递
Enhancing the thermostability of D-allulose 3-epimerase from Clostridium cellulolyticum H10 via directed evolution
2
作者 Shuhan liu Yifan Wang +2 位作者 Demin Kong Jing Wu zhanzhi liu 《Systems Microbiology and Biomanufacturing》 2022年第4期685-694,共10页
d-allulose,the epimer at C-3 position of d-fructose,is a low-calorie functional rare sugar,which is regarded as one of the most potential sweeteners.At present,the main production method of d-allulose is epimerization... d-allulose,the epimer at C-3 position of d-fructose,is a low-calorie functional rare sugar,which is regarded as one of the most potential sweeteners.At present,the main production method of d-allulose is epimerization of d-fructose by d-allulose 3-epimerase(DAE).However,industrial applications of DAE are still limited by its poor thermostability.Herein,directed evolution was applied to improve the thermostability of dAE from Clostridium cellulolyticum H10(CcDAE).Two optimal mutants D281G and C289R,exhibiting 13.80-fold and 13.88-fold t_(1/2 )values as that of wild type at 65℃,respectively,were obtained.To further enhance the thermostability,the triple mutant A107P/D281G/C289R was constructed after combina-tion of mutants D281G,C289R,and previously identified thermostability-enhanced mutant A107P.The T_(m) and optimal temperature of triple mutant were increased by 14.39℃and 5℃,respectively,compared to the wild type,meanwhile,the half-life of triple mutant was 58.85-fold as that of wild type at 65℃.Furthermore,the conversion rate of triple mutant was increased from 24.76%of wild type to 27.53%using 300 g/L d-fructose as substrate at 70℃.The effectiveness of directed evolution was verified and the triple mutant with enhanced thermostability had great application value in the large-scale production of d-allulose. 展开更多
关键词 D-allulose 3-epimerase Directed evolution Ultra-high throughput screening Thermostability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部