Tendon force is an essential concept to predict welding distortion such as longitudinal shrinkage and welding induced buckling in thin plate fabrication. In this study,three approaches with experimental,theoretical an...Tendon force is an essential concept to predict welding distortion such as longitudinal shrinkage and welding induced buckling in thin plate fabrication. In this study,three approaches with experimental,theoretical and computational analysis,are examined to evaluate the magnitude of tendon force. In detail,inherent deformation theory is introduced first,the theoretical analysis to obtain the inherent strain solution is also reviewed; and then analytical solution for tendon force is achieved. Also,the theory of FE analysis for welding is introduced and implemented in a computation to obtain the transient temperature distribution,plastic strain,residual stress and welding distortion in a bead-on-plate welded joint with 2. 28 mm in thickness. The longitudinal displacement is employed to evaluate tendon force directly,and these computed inherent strain and inherent stress can also be employed to evaluate tendon force by integration approach later. All the evaluated magnitudes of tendon force have a good agreement with each other.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51609091)the Fundamental Research Funds for the Central Universities(Grant No.2015MS102)
文摘Tendon force is an essential concept to predict welding distortion such as longitudinal shrinkage and welding induced buckling in thin plate fabrication. In this study,three approaches with experimental,theoretical and computational analysis,are examined to evaluate the magnitude of tendon force. In detail,inherent deformation theory is introduced first,the theoretical analysis to obtain the inherent strain solution is also reviewed; and then analytical solution for tendon force is achieved. Also,the theory of FE analysis for welding is introduced and implemented in a computation to obtain the transient temperature distribution,plastic strain,residual stress and welding distortion in a bead-on-plate welded joint with 2. 28 mm in thickness. The longitudinal displacement is employed to evaluate tendon force directly,and these computed inherent strain and inherent stress can also be employed to evaluate tendon force by integration approach later. All the evaluated magnitudes of tendon force have a good agreement with each other.