Maillard reaction(MR)is a non-enzymatic browning reaction commonly seen in food processing,which occurs between reducing sugars and compounds with amino groups.Despite certain advantages based on Maillard reaction pro...Maillard reaction(MR)is a non-enzymatic browning reaction commonly seen in food processing,which occurs between reducing sugars and compounds with amino groups.Despite certain advantages based on Maillard reaction products(MRPs)found in some food for health and storage application have appeared,however,the MR occurring in human physiological environment can produce advanced glycation end products(AGEs)by non-enzymatic modification of macromolecules such as proteins,lipids and nucleic acid,which could change the structure and functional activity of the molecules themselves.In this review,we take AGEs as our main object,on the one hand,discuss physiologic aging,that is,age-dependent covalent cross-linking and modification of proteins such as collagen that occur in eyes and skin containing connective tissue.On the other hand,pathological aging associated with autoimmune and inflammatory diseases,neurodegenerative diseases,diabetes and diabetic nephropathy,cardiovascular diseases and bone degenerative diseases have been mainly proposed.Based on the series of adverse effects of accelerated aging and disease pathologies caused by MRPs,the possible harm caused by some MR can be slowed down or inhibited by artificial drug intervention,dietary pattern and lifestyle control.It also stimulates people's curiosity to continue to explore the potential link between the MR and human aging and health,which should be paid more attention to for the development of life sciences.展开更多
Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent N...Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent NGH blockages.Previous studies suggested the water film can greatly increase hydrate adhesion in gas-dominant system.Herein,by performing the molecular dynamics simulations,we find in water-dominant system,the water film plays different roles in hydrate deposition on Fe and its corrosion surfaces.Specifically,due to the strong affinity of water on Fe surface,the deposited hydrate cannot convert the adsorbed water into hydrate,thus,a water film exists.As water affinities decrease(Fe>Fe_(2)O_(3)>FeO>Fe_(3)O_(4)),adsorbed water would convert to amorphous hydrate on Fe_(2)O_(3)and form the ordered hydrate on FeO and Fe_(3)O_(4)after hydrate deposition.While absorbed water film converts to amorphous or to hydrate,the adhesion strength of hydrate continuously increases(Fe<Fe_(2)O_(3)<FeO<Fe_(3)O_(4)).This is because the detachment of deposited hydrate prefers to occur at soft region of liquid layer,the process of which becomes harder as liquid layer vanishes.As a result,contrary to gas-dominant system,the water film plays the weakening roles on hydrate adhesion in water-dominant system.Overall,our results can help to better understand the hydrate deposition mechanisms on Fe and its corrosion surfaces and suggest hydrate deposition can be adjusted by changing water affinities on pipeline surfaces.展开更多
Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objectsfrom disordered speckle patterns,achieving imaging through scattering layers.However,the lighting efficienc...Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objectsfrom disordered speckle patterns,achieving imaging through scattering layers.However,the lighting efficiency and fieldof view of existing speckle-correlated imaging systems are limited.Here,a near-infrared low spatial coherence fiberrandom laser illumination method is proposed to address the above limitations.Through the utilization of random Rayleighscattering within dispersion-shifted fibers to provide feedback,coupled with stimulated Raman scattering for amplification,a near-infrared fiber random laser exhibiting a high spectral density and extremely low spatial coherence is generated.Based on the designed fiber random laser,speckle-correlated imaging through scattering layers is achieved,with highlighting efficiency and a large imaging field of view.This work improves the performance of speckle-correlated imagingand enriches the research on imaging through scattering medium.展开更多
Owing to its high sensitivity,selectivity,and accuracy,liquid chromatography coupled with mass spectrometry(LC-MS)is commonly employed to screen,confirm,and quantify impurities in drugs[1].However,LC-MS has certain dr...Owing to its high sensitivity,selectivity,and accuracy,liquid chromatography coupled with mass spectrometry(LC-MS)is commonly employed to screen,confirm,and quantify impurities in drugs[1].However,LC-MS has certain drawbacks such as complicated pretreatment steps,long analysis time,large consumption of organic solvents,high maintenance costs,and,most notably,the need for high-pressure pumps and compatible hardware because of the high column backpressure[2].In this study,a two-dimensional(2D)microscale carbon fiber(CF)/active carbon fiber(ACF)system combined with a quadrupole time-of-flight high-resolution mass spectrometry(2DmCFs-QTOF-HRMS)system was developed to rapid screening impurities in the typical three generations of oral cephalosporins,i.e.,cephalexin tablets(CPXTs),cefuroxime axetil tablets(CFATs),and cefixime tablets(CFXTs)(Fig.S1).The“fuzzy chromatographic separation”sample pretreatment method separates complex samples into high-,medium-,and weak-polar fractions for successive detection of MS,achieving effective reduction of the ion suppression effect in electrospray ionization(ESI)-MS and improving the MS detection sensitivity.Compared to high performance liquid chromatography(HPLC)-MS,this method has distinct advantages such as less organic solvent consumption(1.5 mL),shorter separation and analysis times(5 min),more information on impurities,and high reproducibility.展开更多
Maize seedling blight caused by Fusarium verticillioides is a widely occurring maize disease,but the genetics and mechanisms of resistance are not well understood.In this study,GWAS performed by MLM and 3VmrMLM identi...Maize seedling blight caused by Fusarium verticillioides is a widely occurring maize disease,but the genetics and mechanisms of resistance are not well understood.In this study,GWAS performed by MLM and 3VmrMLM identified 40 and 20 QTNs,associated with seedling blight resistance.These methods identified 49 and 36 genes,respectively.Functional verification of candidate gene ZmSBR1 identified by both methods showed that the resistance of a mutant line to seedling blight decreased by 0.37 grade points after inoculation with F.verticillioides,compared with the WT.The length of the stem rot lesion caused by F.verticillioides increased by 86%in mutant seedlings,and the relative length of the adult plant stalk rot increased by 35%in mutant plants compared to the wild type after inoculation with Fusarium graminearum.Transcriptome analysis showed that expression of defense-related genes after inoculation was down-regulated in the mutant compared to the wild type,synthesis of secondary metabolites associated with resistance was reduced,and the immune response triggered by PAMP decreased,resulting in decreased resistance of mutant maize seedlings.Candidate gene association analysis showed that most maize inbred lines carried the susceptible haplotype.A functional PCR marker was developed.The results demonstrated that ZmSBR1 conferred resistance to multiple Fusarium diseases at the seedling and adult growth stages and had important application value in breeding.展开更多
BACKGROUND Inflammatory indices derived from complete blood tests have been reported to be associated with poor outcomes in patients with atrial fibrillation(AF).The data about the relationship between inflammatory in...BACKGROUND Inflammatory indices derived from complete blood tests have been reported to be associated with poor outcomes in patients with atrial fibrillation(AF).The data about the relationship between inflammatory indices and left atrial appendage thrombus(LAAT)or dense spontaneous echo contrast(SEC)are limited.AIM To explore the value of inflammatory indices for predicting the presence of LAAT or dense SEC in nonvalvular AF patients.METHODS A total of 406 patients with nonvalvular AF who underwent transesophageal echocardiography were included and divided into two groups based on the presence(study group)or absence(control group)of LAAT or dense SEC.Inflammatory indices,including the neutrophil-to-lymphocyte ratio(NLR),platelet–tolymphocyte ratio(PLR),and lymphocyte-to-monocyte ratio(LMR),were calculated from complete blood analysis.The associations of inflammatory indices RESULTS LAAT and dense SEC were detected in 11(2.7%)and 42(10.3%)patients,respectively.The PLR only showed an association with LAAT/dense SEC in the univariate model.Elevated NLR(odds ratio[OR]=1.48,95%confidence interval[CI]:1.11-1.98,P=0.007)and reduced LMR(OR=0.59,95%CI:0.41-0.83,P=0.003)were found to be independent risk factors for the presence of LAAT/dense SEC.The areas under the NLR and LMR curves for predicting LAAT/dense SEC were 0.73(95%CI:0.66-0.80,P<0.001)and 0.73(95%CI:0.65-0.81,P<0.001),respectively,while the cutoff values were 2.8(sensitivity:69.8%;specificity:64.0%)and 2.4(sensitivity:71.7%;specificity:60.6%),respectively.CONCLUSION Increased NLR and decreased LMR may predict LAAT/dense SEC in patients with nonvalvular AF.展开更多
Detecting primordial fluctuations from the cosmic dark ages requires extremely large low-frequency radio telescope arrays deployed on the far side of the Moon.The antenna of such an array must be lightweight,easily st...Detecting primordial fluctuations from the cosmic dark ages requires extremely large low-frequency radio telescope arrays deployed on the far side of the Moon.The antenna of such an array must be lightweight,easily storable and transportable,deployable on a large scale,durable,and capable of good electrical performance.A membrane antenna is an excellent candidate to meet these criteria.We study the design of a low-frequency membrane antenna for a lunar-based low-frequency(<30 MHz)radio telescope constructed from polyimide film widely used in aerospace applications,owing to its excellent dielectric properties and high stability as a substrate material.We first design and optimize an antenna in free space through dipole deformation and coupling principles,then simulate an antenna on the lunar surface with a simple lunar soil model,yielding an efficiency greater than 90%in the range of 12-19 MHz and greater than 10%in the range of 5-35 MHz.The antenna inherits the omni-directional radiation pattern of a simple dipole antenna in the 5-30 MHz frequency band,giving a large field of view and allowing detection of the 21 cm global signal when used alone.A demonstration prototype is constructed,and its measured electrical property is found to be consistent with simulated results using|S11|measurements.This membrane antenna can potentially fulfill the requirements of a lunar low-frequency array,establishing a solid technical foundation for future large-scale arrays for exploring the cosmic dark ages.展开更多
基金financially supported by grants from the National Natural Science Foundation of China (82170873,81871095)the National Natural Science Foundation of China (81974503)the Tsinghua University Spring Breeze Fund (20211080005)。
文摘Maillard reaction(MR)is a non-enzymatic browning reaction commonly seen in food processing,which occurs between reducing sugars and compounds with amino groups.Despite certain advantages based on Maillard reaction products(MRPs)found in some food for health and storage application have appeared,however,the MR occurring in human physiological environment can produce advanced glycation end products(AGEs)by non-enzymatic modification of macromolecules such as proteins,lipids and nucleic acid,which could change the structure and functional activity of the molecules themselves.In this review,we take AGEs as our main object,on the one hand,discuss physiologic aging,that is,age-dependent covalent cross-linking and modification of proteins such as collagen that occur in eyes and skin containing connective tissue.On the other hand,pathological aging associated with autoimmune and inflammatory diseases,neurodegenerative diseases,diabetes and diabetic nephropathy,cardiovascular diseases and bone degenerative diseases have been mainly proposed.Based on the series of adverse effects of accelerated aging and disease pathologies caused by MRPs,the possible harm caused by some MR can be slowed down or inhibited by artificial drug intervention,dietary pattern and lifestyle control.It also stimulates people's curiosity to continue to explore the potential link between the MR and human aging and health,which should be paid more attention to for the development of life sciences.
基金This work was supported by the National Natural Science Foundation of China(51874332,51991363)the CNPC's Major Science and Technology Projects(ZD2019-184-003)+1 种基金the Fundamental Research Funds for Central Universities(20CX05008A)“14th Five-Year plan”forward-looking basic major science and technology project of CNPC(2021DJ4901).
文摘Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent NGH blockages.Previous studies suggested the water film can greatly increase hydrate adhesion in gas-dominant system.Herein,by performing the molecular dynamics simulations,we find in water-dominant system,the water film plays different roles in hydrate deposition on Fe and its corrosion surfaces.Specifically,due to the strong affinity of water on Fe surface,the deposited hydrate cannot convert the adsorbed water into hydrate,thus,a water film exists.As water affinities decrease(Fe>Fe_(2)O_(3)>FeO>Fe_(3)O_(4)),adsorbed water would convert to amorphous hydrate on Fe_(2)O_(3)and form the ordered hydrate on FeO and Fe_(3)O_(4)after hydrate deposition.While absorbed water film converts to amorphous or to hydrate,the adhesion strength of hydrate continuously increases(Fe<Fe_(2)O_(3)<FeO<Fe_(3)O_(4)).This is because the detachment of deposited hydrate prefers to occur at soft region of liquid layer,the process of which becomes harder as liquid layer vanishes.As a result,contrary to gas-dominant system,the water film plays the weakening roles on hydrate adhesion in water-dominant system.Overall,our results can help to better understand the hydrate deposition mechanisms on Fe and its corrosion surfaces and suggest hydrate deposition can be adjusted by changing water affinities on pipeline surfaces.
基金supported by the National Natural Science Foundation of China(Grant Nos.62375040 and 11974071)the Sichuan Science and Technology Program(Grant Nos.2022ZYD0108 and 2023JDRC0030).
文摘Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objectsfrom disordered speckle patterns,achieving imaging through scattering layers.However,the lighting efficiency and fieldof view of existing speckle-correlated imaging systems are limited.Here,a near-infrared low spatial coherence fiberrandom laser illumination method is proposed to address the above limitations.Through the utilization of random Rayleighscattering within dispersion-shifted fibers to provide feedback,coupled with stimulated Raman scattering for amplification,a near-infrared fiber random laser exhibiting a high spectral density and extremely low spatial coherence is generated.Based on the designed fiber random laser,speckle-correlated imaging through scattering layers is achieved,with highlighting efficiency and a large imaging field of view.This work improves the performance of speckle-correlated imagingand enriches the research on imaging through scattering medium.
基金supported by a grant from the National Natural Science Foundation of China(Grant Nos.:22176164 and 21904113)the Higher Education Discipline Innovation Project,China(Project No.:D18012).
文摘Owing to its high sensitivity,selectivity,and accuracy,liquid chromatography coupled with mass spectrometry(LC-MS)is commonly employed to screen,confirm,and quantify impurities in drugs[1].However,LC-MS has certain drawbacks such as complicated pretreatment steps,long analysis time,large consumption of organic solvents,high maintenance costs,and,most notably,the need for high-pressure pumps and compatible hardware because of the high column backpressure[2].In this study,a two-dimensional(2D)microscale carbon fiber(CF)/active carbon fiber(ACF)system combined with a quadrupole time-of-flight high-resolution mass spectrometry(2DmCFs-QTOF-HRMS)system was developed to rapid screening impurities in the typical three generations of oral cephalosporins,i.e.,cephalexin tablets(CPXTs),cefuroxime axetil tablets(CFATs),and cefixime tablets(CFXTs)(Fig.S1).The“fuzzy chromatographic separation”sample pretreatment method separates complex samples into high-,medium-,and weak-polar fractions for successive detection of MS,achieving effective reduction of the ion suppression effect in electrospray ionization(ESI)-MS and improving the MS detection sensitivity.Compared to high performance liquid chromatography(HPLC)-MS,this method has distinct advantages such as less organic solvent consumption(1.5 mL),shorter separation and analysis times(5 min),more information on impurities,and high reproducibility.
基金supported by grants from the National Key Research and Development Program Project of China(2022YFD1201803)Research on Resistance Genetics of Maize Root Rot Disease,State Key Laboratory of Agronomy College,Henan Agricultural University,China(39990073/111)。
文摘Maize seedling blight caused by Fusarium verticillioides is a widely occurring maize disease,but the genetics and mechanisms of resistance are not well understood.In this study,GWAS performed by MLM and 3VmrMLM identified 40 and 20 QTNs,associated with seedling blight resistance.These methods identified 49 and 36 genes,respectively.Functional verification of candidate gene ZmSBR1 identified by both methods showed that the resistance of a mutant line to seedling blight decreased by 0.37 grade points after inoculation with F.verticillioides,compared with the WT.The length of the stem rot lesion caused by F.verticillioides increased by 86%in mutant seedlings,and the relative length of the adult plant stalk rot increased by 35%in mutant plants compared to the wild type after inoculation with Fusarium graminearum.Transcriptome analysis showed that expression of defense-related genes after inoculation was down-regulated in the mutant compared to the wild type,synthesis of secondary metabolites associated with resistance was reduced,and the immune response triggered by PAMP decreased,resulting in decreased resistance of mutant maize seedlings.Candidate gene association analysis showed that most maize inbred lines carried the susceptible haplotype.A functional PCR marker was developed.The results demonstrated that ZmSBR1 conferred resistance to multiple Fusarium diseases at the seedling and adult growth stages and had important application value in breeding.
基金Public Welfare Technology Project of Ningbo Science and Technology Bureau,No.2023S140Medical Health Science and Technology Project of Zhejiang Province Health Commission,No.2024KY1518.
文摘BACKGROUND Inflammatory indices derived from complete blood tests have been reported to be associated with poor outcomes in patients with atrial fibrillation(AF).The data about the relationship between inflammatory indices and left atrial appendage thrombus(LAAT)or dense spontaneous echo contrast(SEC)are limited.AIM To explore the value of inflammatory indices for predicting the presence of LAAT or dense SEC in nonvalvular AF patients.METHODS A total of 406 patients with nonvalvular AF who underwent transesophageal echocardiography were included and divided into two groups based on the presence(study group)or absence(control group)of LAAT or dense SEC.Inflammatory indices,including the neutrophil-to-lymphocyte ratio(NLR),platelet–tolymphocyte ratio(PLR),and lymphocyte-to-monocyte ratio(LMR),were calculated from complete blood analysis.The associations of inflammatory indices RESULTS LAAT and dense SEC were detected in 11(2.7%)and 42(10.3%)patients,respectively.The PLR only showed an association with LAAT/dense SEC in the univariate model.Elevated NLR(odds ratio[OR]=1.48,95%confidence interval[CI]:1.11-1.98,P=0.007)and reduced LMR(OR=0.59,95%CI:0.41-0.83,P=0.003)were found to be independent risk factors for the presence of LAAT/dense SEC.The areas under the NLR and LMR curves for predicting LAAT/dense SEC were 0.73(95%CI:0.66-0.80,P<0.001)and 0.73(95%CI:0.65-0.81,P<0.001),respectively,while the cutoff values were 2.8(sensitivity:69.8%;specificity:64.0%)and 2.4(sensitivity:71.7%;specificity:60.6%),respectively.CONCLUSION Increased NLR and decreased LMR may predict LAAT/dense SEC in patients with nonvalvular AF.
基金We acknowledge the support of the National SKA program of China(2022SKA0110100,2022SKA0110101)the Natural Science Foundation of China(12273070,12203061,1236114814,12303004).
文摘Detecting primordial fluctuations from the cosmic dark ages requires extremely large low-frequency radio telescope arrays deployed on the far side of the Moon.The antenna of such an array must be lightweight,easily storable and transportable,deployable on a large scale,durable,and capable of good electrical performance.A membrane antenna is an excellent candidate to meet these criteria.We study the design of a low-frequency membrane antenna for a lunar-based low-frequency(<30 MHz)radio telescope constructed from polyimide film widely used in aerospace applications,owing to its excellent dielectric properties and high stability as a substrate material.We first design and optimize an antenna in free space through dipole deformation and coupling principles,then simulate an antenna on the lunar surface with a simple lunar soil model,yielding an efficiency greater than 90%in the range of 12-19 MHz and greater than 10%in the range of 5-35 MHz.The antenna inherits the omni-directional radiation pattern of a simple dipole antenna in the 5-30 MHz frequency band,giving a large field of view and allowing detection of the 21 cm global signal when used alone.A demonstration prototype is constructed,and its measured electrical property is found to be consistent with simulated results using|S11|measurements.This membrane antenna can potentially fulfill the requirements of a lunar low-frequency array,establishing a solid technical foundation for future large-scale arrays for exploring the cosmic dark ages.