在大气压介质阻挡放电的实际应用中,空气介质阻挡放电具有极其广泛的工业化应用前景。目前,空气均匀放电的获得仍比较困难,且诊断均匀性的依据缺乏可信的依据。文章采用粒子云网格法(Particle in Cell,PIC)与蒙特卡罗碰撞(Monte Carlo C...在大气压介质阻挡放电的实际应用中,空气介质阻挡放电具有极其广泛的工业化应用前景。目前,空气均匀放电的获得仍比较困难,且诊断均匀性的依据缺乏可信的依据。文章采用粒子云网格法(Particle in Cell,PIC)与蒙特卡罗碰撞(Monte Carlo Collision,MCC)方法模拟了放电过程中粒子的运动情况,研究大气压下空气介质阻挡放电的发展过程,然后讨论介质厚度、电源频率对形成均匀放电的影响,并研究这两种因素对等离子体密度的影响。模拟结果表明:介质厚度在d≥1.5 mm时可获得没有放电细丝的电流波形;电源频率高于2.5 kHz时,放电细丝是难以避免的。在能够形成均匀放电的条件下,将介质厚度适当的调整在1.5 mm附近,提高电源频率,将产生更高的等离子体密度。展开更多
文摘在大气压介质阻挡放电的实际应用中,空气介质阻挡放电具有极其广泛的工业化应用前景。目前,空气均匀放电的获得仍比较困难,且诊断均匀性的依据缺乏可信的依据。文章采用粒子云网格法(Particle in Cell,PIC)与蒙特卡罗碰撞(Monte Carlo Collision,MCC)方法模拟了放电过程中粒子的运动情况,研究大气压下空气介质阻挡放电的发展过程,然后讨论介质厚度、电源频率对形成均匀放电的影响,并研究这两种因素对等离子体密度的影响。模拟结果表明:介质厚度在d≥1.5 mm时可获得没有放电细丝的电流波形;电源频率高于2.5 kHz时,放电细丝是难以避免的。在能够形成均匀放电的条件下,将介质厚度适当的调整在1.5 mm附近,提高电源频率,将产生更高的等离子体密度。