Electron beams of 0.5, 1.5, 2.0, and 5.0 MeV were used to irradiate n-Si diodes to fluences of5.5×10^(13), 1.7×10^(14), and 3.3×1014 e cm^(-2). The forward voltage drop, minority carrier lifetime, and d...Electron beams of 0.5, 1.5, 2.0, and 5.0 MeV were used to irradiate n-Si diodes to fluences of5.5×10^(13), 1.7×10^(14), and 3.3×1014 e cm^(-2). The forward voltage drop, minority carrier lifetime, and deep level transient spectroscopy(DLTS) characteristics of silicon p–n junction diodes before and after irradiation were compared. At the fluence of 3.3×10^(14) e cm^(-2), the forward voltage drop increased from 1.25 V at 0.5 MeV to 7.96μs at 5.0 MeV, while the minority carrier lifetime decreased significantly from 7.09 ls at 0.5 MeV to 0.06μs at 5.0 MeV. Six types of changes in the energy levels in DLTS spectra were analyzed and discussed.展开更多
基金supported by the Beijing education and scientific research department(No.KM201510005008)
文摘Electron beams of 0.5, 1.5, 2.0, and 5.0 MeV were used to irradiate n-Si diodes to fluences of5.5×10^(13), 1.7×10^(14), and 3.3×1014 e cm^(-2). The forward voltage drop, minority carrier lifetime, and deep level transient spectroscopy(DLTS) characteristics of silicon p–n junction diodes before and after irradiation were compared. At the fluence of 3.3×10^(14) e cm^(-2), the forward voltage drop increased from 1.25 V at 0.5 MeV to 7.96μs at 5.0 MeV, while the minority carrier lifetime decreased significantly from 7.09 ls at 0.5 MeV to 0.06μs at 5.0 MeV. Six types of changes in the energy levels in DLTS spectra were analyzed and discussed.