In gamma-ray burst prompt emission,there is still no consistent conclusion if the precursor and main burst share the same origin.In this paper,we try to study this issue based on the relationship between pulse width a...In gamma-ray burst prompt emission,there is still no consistent conclusion if the precursor and main burst share the same origin.In this paper,we try to study this issue based on the relationship between pulse width and energy of the precursor and main burst.We systematically search the light curve data observed by Swift/BAT and Fermi/GBM,and find 13 long bursts with well-structured precursors and main bursts.After fitting the precursor light curve of each different energy channel with the Norris function,we find that there is not only a power-law relationship between precursor width and energy,but also a power-law relationship between the ratio of the rising width to the decaying width and energy.By comparing the relationship between the precursors and the main burst pulses,we find that the distribution of the precursors and the relationship between the power-law indices are roughly the same as those of the main burst.In addition,it is found that the precursor width distribution as well as the upper limit of the pulse width ratio does not exceed 1 and both are asymmetric,which are also consistent with the main burst.These indicate that the precursor and the main burst are indistinguishable,and the precursor and the main burst may have the same physical origin.展开更多
The phenomenon of gamma-ray burst (GRB) spectral lags is very common, but a definitive explanation has not yet been given. From a sample of 82 GRB pulses we find that the spectral lags are correlated with the pulse ...The phenomenon of gamma-ray burst (GRB) spectral lags is very common, but a definitive explanation has not yet been given. From a sample of 82 GRB pulses we find that the spectral lags are correlated with the pulse widths, however, there is no correlation between the relative spectral lags and the relative pulse widths. We suspect that the correlations between spectral lags and pulse widths might be caused by the Lorentz factor of the GRBs concerned. Our analysis on the relative quantities suggests that the intrinsic spectral lag might reflect other aspect of pulses than the aspect associated with the dynamical time of shocks or that associated with the time delay due to the curvature effect.展开更多
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.12163007,11763009)。
文摘In gamma-ray burst prompt emission,there is still no consistent conclusion if the precursor and main burst share the same origin.In this paper,we try to study this issue based on the relationship between pulse width and energy of the precursor and main burst.We systematically search the light curve data observed by Swift/BAT and Fermi/GBM,and find 13 long bursts with well-structured precursors and main bursts.After fitting the precursor light curve of each different energy channel with the Norris function,we find that there is not only a power-law relationship between precursor width and energy,but also a power-law relationship between the ratio of the rising width to the decaying width and energy.By comparing the relationship between the precursors and the main burst pulses,we find that the distribution of the precursors and the relationship between the power-law indices are roughly the same as those of the main burst.In addition,it is found that the precursor width distribution as well as the upper limit of the pulse width ratio does not exceed 1 and both are asymmetric,which are also consistent with the main burst.These indicate that the precursor and the main burst are indistinguishable,and the precursor and the main burst may have the same physical origin.
基金the National Natural Science Foundation of China.
文摘The phenomenon of gamma-ray burst (GRB) spectral lags is very common, but a definitive explanation has not yet been given. From a sample of 82 GRB pulses we find that the spectral lags are correlated with the pulse widths, however, there is no correlation between the relative spectral lags and the relative pulse widths. We suspect that the correlations between spectral lags and pulse widths might be caused by the Lorentz factor of the GRBs concerned. Our analysis on the relative quantities suggests that the intrinsic spectral lag might reflect other aspect of pulses than the aspect associated with the dynamical time of shocks or that associated with the time delay due to the curvature effect.